Expressive Response Curves: Testing Expressive Game Feel with A*

Nic Junius, Elin Carstensdottir

University of California, Santa Cruz
njunius @ucsc.edu, ecarsten @ucsc.edu

Abstract

Designing Al models for expressive character behavior is
a considerable challenge. Such models represent a massive
possibility space of individual behaviors and sequences of
different character expressions. Iterating on designs of such
models is complex because the possibility spaces they afford
are challenging to understand in their entirety and map intu-
itively onto a meaningful experience for a user. Automated
playtesting has primarily been focused on the physical spaces
of game levels and the ability of Al players to enact personas
and complete tasks within those levels. However, core prin-
ciples of automated playtesting can be applied to expressive
models to expose information about their expressive possibil-
ity space. We propose a new approach to automated playtest-
ing for Al character behaviors: Expressive Response Curves
(ERC). ERC allows us to map specific actions taken by a
player to perform a particular expression to understand the
affordances of an expressive possibility space. We present a
case study applying ERC to Puppitor rulesets. We show that
using this method we can compile paths through Puppitor
rulesets to map them and further understand the nature of the
expressive spaces afforded by the system. We argue that by
using ERC, it is possible to give designers more nuanced in-
formation and guidance to create better and more expressive
Al characters.

Introduction

Designing expressive character behavior for Al performance
is a difficult undertaking thanks to the complexity of the
possibility spaces they create. The scale and complexity of
these expressive possibility spaces makes iterating on the de-
signs of models and domains for these systems challenging
due to the limited insight their definitions provide about the
nature of the spaces themselves. A lack of available tools
and techniques to assist in understanding expressive possi-
bility spaces reinforces this problem. Furthermore, this lack
of support leads to a lack of easily intuitable information
about the kinds of play experiences these possibility spaces
produce. As a result, designing the possibility spaces them-
selves and relating them to resulting player experiences, hu-
man or Al, is frequently done through human playtesting
and observation which can leave large areas of these spaces
unexplored and underutilized.

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Automated playtesting for games has largely been fo-
cused on evaluating generated levels (Liapis et al. 2015;
Powley et al. 2016; Holmgard et al. 2018) and game balance
(Zook, Harrison, and Riedl 2015; Pfau et al. 2020, 2022)
and emulating human decision making (Devlin et al. 2016;
Holmgard et al. 2016). The difficulty of gaining insights
about Al systems, behaviors, and potential play experiences
through purely human testing drove us towards developing
methods of automated playtesting specifically for expressive
models. With our goal in mind, we view core principles of
automated playtesting as applicable to expressive models,
helping us expose information about the expressive possi-
bility spaces created by these models in more intuitive ways
than currently exist. Interest in pursuing more player expe-
rienced approaches to automated playtesting is increasing,
as recent work in the field illustrates (Barthet et al. 2022).
Through automated playtesting we can gain a more com-
plete picture of expressive possibility spaces than traditional
playtesting approaches would reveal. In turn, enabling more
deliberate design iteration and better understanding the im-
plications changes to these spaces have on the player expe-
rience.

In this paper we propose Expressive Response Curves
(ERC) as the base unit of our approach to automated
playtesting. An ERC represents a sequence of character ac-
tions and states, in an expressive possibility space. Individ-
ual ERCs are then combined to create maps of the possi-
bility spaces defined by Al models of expression. In doing
s0, ERC maps can surface information about how and when
interaction and feedback is presented to a human player as
they interact with the system or express themselves using
the system. This mapping, therefore, allows us to analyze
and ultimately characterize particular expressive possibility
spaces with regards to the player experiences they afford.
The focus of this paper is on the application of ERCs to the
expressive possibility spaces created by a model of charac-
ter expression, but ERCs applicable to expressive possibility
spaces created from other sources like emergent narrative
systems (Kybartas, Verbrugge, and Lessard 2020; Osborn,
Samuel, and Mateas 2018).

Furthermore, as a sequence of potential actions and tim-
ings in relation to state, ERCs can surface information about
moment-to-moment player actions and feedback. This al-
lows us to expose how the player interacts system at the level

Worry to Each Affect, Cost=(|d_goal_val|)

fear

fear L - anger
‘ 1 / ! sadness

)
) B

fear fear

worry
5

I resting, neutral [1 openitempo_up M closed, tempo_down
I resting, tempo_up M open, tempo_down [projected, neutral

Il resting, tempo_down [l closed, neutral [projected, tempo_up
[open, neutral I closed, tempo_up M projected, tempo_down

Figure 1: A collection of ERCs, creating an ERC map, where
each flow path represents a single ERC and path from ex-
pressing worry to a different affect in the test domain of Pup-
pitor. The same moves can be used as part of a sequence of
actions to express different affects in Puppitor.

of character responsiveness to their actions. In this sense,
therefore, ERCs allow us to visualize what is the equiva-
lent of Game Feel (Swink 2008) for expressive character Al
This moves us closer to being able to directly study the con-
nection between an expressive Al system’s functionality and
player experience and perception, and the dynamics between
them.

We describe our approach to creating and using ERCs and
present a case study of its application to Puppitor (Junius
et al. 2022), an embedded domain specific language that de-
fines the expressive qualities of a character to allow human
and Al players to collaboratively perform scenes within nar-
rative experiences. We chose Puppitor for this case study as
it is a lightweight and flexible framework that suits our pur-
pose of creating a complex expressive space in a human au-
thorable format. Additionally Puppitor is a freely available,
publicly accessible software library which has been used as
part of a playable experience, from which we extracted rule-
sets to conduct our case study. Finally, we discuss the results
of the case study and the implications ERCs have for the de-
velopment of Al characters and performance.

ERC is not a recommendation tool or an approach for
providing explicit suggestions to designers about the spaces
they create. Rather, it is a method to allow them to make
more informed decisions about the possibility spaces they
are creating and how their designs could be perceived by a
player.

Related Work

Our approach to creating ERCs is rooted in using concepts
from game feel, namely response envelopes (Swink 2008)
and juice (Gabler et al. 2005) as an alternative foundation
to automated playtesting. The analytical aspect of ERCs
draws inspiration from expressive range analysis (Smith and

Whitehead 2010) as an existing approach to characterizing
the possibility spaces created by generative systems. Finally,
we chose to use A* (Hart, Nilsson, and Raphael 1968) as
part of the approach to creating ERCs over other popular al-
gorithms like Monte Carlo Tree Search (Chaslot et al. 2006)
due to its more consistent and reproducible behavior. Addi-
tionally, A* has built in path generating functionality which
is important for the creation of ERCs, as they are paths
through expressive possibility space, and their analysis to
characterize the expressive possibility space’s affordances
for player experience as inspired by game feel.

Automated playtesting has grown from the desire to have
rapid evaluation of generated content such as video game
levels (Liapis et al. 2015; Powley et al. 2016; Holmgard et al.
2018), game balance (Zook, Harrison, and Riedl 2015; Pfau
et al. 2020, 2022), and skill progression (Horn et al. 2018).
When used for the evaluation of generated levels, personas
capturing human playstles are frequently used (Liapis et al.
2015; Ariyurek, Surer, and Betin-Can 2022). Monte Carlo
Tree Search (MCTS), a best-first search algorithm devel-
oped for general gameplaying (Chaslot et al. 2006, 2008), is
commonly used to drive automated playtesters (Zook, Har-
rison, and Riedl 2015; Keehl and Smith 2018; Horn et al.
2018; Holmgérd et al. 2018; Mugrai et al. 2019) as it re-
quires no domain knowledge to be integrated into the al-
gorithm (Jacobsen, Greve, and Togelius 2014). Even with
this benefit, MCTS does require some adaptation for the pur-
pose of human-like playtesting. While the algorithm’s high-
level reasoning of trying to choose the best available move
by predicting the outcomes does resemble parts of human
decision-making processes (Holmgard et al. 2018), the com-
monly used selection formula, Upper Confidence Bound for
Trees (UCT), frequently leads to inhuman choices for game
moves (Devlin et al. 2016). Additionally, MCTS’s nature as
an aggregator of random actions makes its exact sequences
of actions difficult to consistently reproduce, meaning for
our purposes of creating ERCs, it is unsuited to our goal
of finding reproducible paths through expressive possibility
space.

Expressive range analysis (ERA) is a method of describ-
ing the possibility space of a generator, often a level gen-
erator, based on the artifacts it produces (Smith and White-
head 2010). The existence of ERA creates the potential for
analysis of other possibility spaces, including the expressive
ones we describe in this paper or the results of automated
playtesting (Agarwal et al. 2020). ERA has become one of
the foundations for qualitative exploration and understand-
ing the range of artifacts produced by a generator (Sum-
merville 2018). The core of this approach to analysis is the
selection of metrics to describe a level, each corresponding
to an axis, to allow the for the visualization of the metric
scores of a set of generated artifacts (Smith and Whitehead
2010). ERA has been incorporated into design support tools
like Danesh (Cook et al. 2021) which will automatically an-
alyze a set of generated artifacts as part of its goals for ex-
posing the contours of generators.

With our goal of exposing the responsiveness of expres-
sive systems to designers through automated playtesting,
we use game feel (Swink 2008) as the foundation of our

method’s understanding of the effects granular, low-level in-
teractions have on player experience. Game feel describes
the way interacting with a game is built out of numerous
pieces coming together, from the ways an individual button
press manifests on screen and through speakers to the ways
giving a player goals alters their relationship to individual
tasks (Swink 2008). The two most relevant aspects of game
feel to the discussion of physical character expression are re-
sponse metrics and low-level rules. When describing the re-
lationship between input and feedback, Swink identifies the
stages of attack, sustain, and release (ASR) as an approach to
understanding the way a game interprets and responds to in-
put (Swink 2008). Swink discusses ASR almost exclusively
in relation to the ways button presses correspond to the re-
sponses of an on screen character. Low-level rules in turn de-
fine the physical relationships between entities, such as why
larger enemies tend to take more damage to kill or bigger,
heavier moves in fighting games tend to do more damage
than lighter, faster ones (Swink 2008).

Additionally, juice is a subset of game feel focused on cas-
cading audiovisual feedback in response to player actions
and input (Gabler et al. 2005) and our usage of ERCs can
provide insight about where juice may ideally be applied to
heighten the play experience. With that said, the specifics of
juicy design are highly dependent on the type of experience
being developed or discussed (Hicks et al. 2018). Interest-
ingly, with as much focus as juice has received as part of
game feel and feedback mechanisms, it does not necessarily
improve player performance in games and too much or ill
considered incorporation of juicy elements can slightly de-
tract from their use as feedback about performance (Hicks
et al. 2019). While a discussion of juice as a component
of interacting with Al controlled characters is beyond the
scope of this work, ERC can help guide designers to places
where incorporating such elements would be beneficial to
the player experience.

We chose to use A* as the technical foundation for creat-
ing ERCs because it is a heuristic graph search and pathfind-
ing algorithm. A* uses a breadth-first approach to visiting
graph nodes and a priority queue based on cost and heuristic
values to guide the search towards a specific goal (Hart, Nils-
son, and Raphael 1968). Unlike breadth-first search, A* is
not guaranteed to visit every node in a graph, nor is it guaran-
teed to find an optimal path without an admissible heuristic,
a heuristic function which never over-estimates the distance
to the goal (Hart, Nilsson, and Raphael 1968). The algorithm
searches a given graph from a chosen starting point, towards
a specified goal, using a heuristic to capture domain knowl-
edge about the graph’s domain to help prioritize promising
nodes. From the starting node, each adjacent node is pro-
cessed and added to a priority queue if it has not already
been visited or the cost to reach the node is less than the pre-
vious visit. The node’s priority is then determined by the cost
to reach the node and the heuristic’s estimated distance to the
goal from the node. The highest priority node is then taken
from the queue and the process is repeated until the goal is
found. A* has been used in game related domains like path
planning (Higgins 2002), action planning (Orkin 2005), and
general game playing (Jacobsen, Greve, and Togelius 2014)

thanks to its nature as a heuristic search allowing for flexibil-
ity across domains. In addition, the paths A* finds are more
easily reproducible than other algorithms commonly used in
game Al like MCTS. Both of these features allow ERCs to
have a common technical basis which can be adapted to do-
mains beyond those we consider explicitly in this paper.

Methodology

The method of creating and analyzing ERCs is focused on
characterizing a possibility space through repeated searches
to build a map of the locations in a sequence of actions and
state changes that have noticeable and human perceptible
feedback. Combining individual ERCs into a map of expres-
sive possibility space exposes the complexity and respon-
siveness of actions required for a player to move between
different expressive states described by the possibility space.
Points in these possibility spaces are visited in sequence,
with the path between them connecting them temporally to
each other. Any location where a human perceptible change
occurs in one of these sequences is then highlighted.

The steps for building and analyzing ERCs is as follows:

* Translating the domain to A*: Modify the chosen ex-
pressive possibility space and turn it into a graph domain
to allow A* search to be used.

* Adapting A* to the domain: A* is a heuristic search and
therefore has its cost and heuristic functions informed by
the specifics of the domain to create ERCs.

* Running searches: Starting points for A* searches are
chosen and search goals are defined in line with the do-
main knowledge representation to generate paths for the
creation and analysis of ERCs.

* Analyzing paths: The paths found by A* are analyzed
for their length, complexity, and responsiveness to player
input and compared with each other to characterize the
possibility space.

Translating the Domain to A*

To allow A* to operate over an expressive possibility space
domain, its features must be translated into a graph format
that the search algorithm can understand. This translation
process focuses on identifying the elements of a given ex-
pressive possibility space that correspond to nodes and edges
of a graph. A node defined by whichever domain elements
describe a point in the possibility space. They contain a
particular state representation, such as the relative values
of each available expression and which expression is per-
formed based on those values. An edge is made up of the
elements of a possibility space which facilitate moving be-
tween the points it contains. These are represented as actions
which have an effect on the state representation contained
within a node, such as raising or decreasing the relative val-
ues of some of the expressions in a node. The exact details
of this translation process are dependent on the way a given
possibility space is defined. Which elements of a domain
correspond to each graph element may not be obvious if con-
cepts like state or state changes are not defined. We give a
detailed example of the creation and application of ERCs in
The case study sections.

Adapting A* to the Domain

Once a graph form of the possibility space is created, A*
must be adapted to work with this new domain. This adap-
tation process focuses on defining the node representation,
calculating edge costs, designing heuristic functions, and fi-
nally identifying abstractions necessary to the search, with
the ultimate goal being the creation of an A* search which
outputs useful and effective ERCs.

The representation of nodes able to produce ERCs re-
quires that human perceivable changes to state be made pri-
mary components of a node. The translation of an expres-
sive possibility space into a graph will not necessarily ex-
pose these state elements in an obvious way. For the purpose
of creating ERCs, nodes must also highlight the components
of the state which are feedback for the player. By highlight-
ing these elements and making them primary components
of the nodes, the sequences of actions found by A* search
expose the perceived responsiveness of an expressive possi-
bility space.

Edge costs are required to guide A* searches towards their
goal and as a result can have noticeable effects on which se-
quences of actions A* chooses to perform, potentially mak-
ing for more variance between individual ERCs. For this rea-
son, costs are calculated during the search rather than being
solely a fixed property of the graph definition. This decision
allows the behavior of A* to be directed to prioritize dif-
ferent features of the domain and more effectively explore
different permutations of action sequences. As a result the
cost calculation must factor in the complexity and/or desir-
ability of available actions. Different cost calculations then
can be used to produce a wider range of individual ERCs
to describe qualitatively distinct paths through parts of a do-
main’s expressive possibility space, allowing for more com-
prehensive ERC maps to be created.

Creating a heuristic for A* in the domain expressive pos-
sibility space requires an understanding of the goal’s repre-
sentation, as a valid goal for the creation of an ERC can be
as general as a component of feedback being exposed or as
specific as an exact state representation. Because ERCs are
focused on the human perceivable elements of expressive
state, the goal of a search should reflect this priority. In turn,
the heuristic function must have its calculations based on the
state components responsible for tracking player feedback.
As a result, when designing a heuristic function to produce
ERC:s, the distance estimate must include some understand-
ing of player visible feedback as defined in the domain.

Finally, the complexity and scale of expressive possibility
spaces can lead to searches becoming bogged down taking
huge numbers of repeated actions to make minute changes
to the state. To ease this calculation burden, any area of the
search featuring long sequences of repeated action can be
abstracted into single actions with cost and state changes to
reflect the distance they cover, and to allow for much faster
creation of individual ERCs.

Running Searches

Running searches for the purpose generating ERCs priori-
tizes finding starting points with distinct human perceivable

differences in state. The goal of an individual search is an-
other point in the expressive possibility space with perceiv-
able differences to the starting point. Effective searches from
a singular starting point cover all possible goals, whether or
not a particular goal is in fact achievable from the chosen
starting point.

Analyzing Paths

The process of creating a map of ERCs begins with choos-
ing a starting point and an expressive goal to be found. The
sequence of actions to reach this goal is then created using
the search as described previously. Next, any point in the
sequence of actions where a new action is taken or shows
feedback visible to a player is highlighted. These steps are
repeated for the same starting point for each possible expres-
sive goal: creating a new ERC and highlighting the points of
change in the found path. The individual ERCs using the
same starting point are then combined to make a map of the
expressive space between that starting point and all possible
expressive goals in the possibility space.

The reason for highlighting changes in state, both player
and system controlled, stems from Swink’s response en-
velopes, which expose the relationship between a human
player’s input and the game responding with its own feed-
back (movement, animation, etc.) as a function of the time
it takes for the game to complete a state transition. An ERC
can then show the responsiveness of an area of a domain
by exposing the length of time it takes for the state to re-
spond to player input. This measurement of time can be as
fine grained as the number of frames drawn to the screen,
with the higher the frame count (or any other time measure-
ment) between a player action and feedback from the state
corresponding to lower responsiveness to the action taken.

Path length itself can be a measure of responsiveness and
complexity. A lengthy path that contains long sequences of
perceptually similar nodes, especially if their edges are dis-
tinct, is an indicator of an unresponsive area of the expres-
sive possibility space, the expressive equivalent of the 1000
bowls of oatmeal problem (Compton 2016; Rabii and Cook
2023). Whereas a long path with many perceptually dis-
tinct nodes with multiple different kinds of edges connect-
ing them is an indicator of complexity when trying to reach
a particular part of expressive space from a given starting
point.

Case Study: Puppitor Rulesets

Creating ERCs to analyze the expressive possibility space
created by Puppitor character rulesets required us to trans-
late Puppitor into a more easily searchable domain. Our cho-
sen rules are extracted from Tracks in Snow (TiS) (June et al.
2021), a visual novel designed to showcase Puppitor (Ju-
nius et al. 2022). This process focused on identifying which
elements of the domain are relevant to state representation
and the actions which allow movement between expressive
states, then converting them into a graph structure for use
with A*. For this reason we begin this section with a sum-
mary of Puppitor as an expressive domain, then discuss our
translation choices, approach to applying domain knowledge

to A*, and reasoning behind the creation of particular sets of
paths through Puppitor’s possibility space.

Puppitor

Puppitor is an embedded domain specific language that de-
fines the expressive qualities of a character to allow human
and Al players to collaboratively perform scenes within nar-
rative experiences (Junius et al. 2022). The system creates a
framework to map a character’s physical actions to expres-
sions of emotional affect. These physical actions are defined
as actions and modifiers, with only one of each respective
category being allowed to be performed at any time (the
prevailing action and modifier). These actions and modifiers
can be mapped to buttons on a keyboard to facilitate human
input:

actions:
open_flow : N
closed_flow : M
projected_energy : B
resting : None
modifiers:
tempo_up : C
tempo_down : Z
neutral: None

In the above example, the action and modifier, taken from
one of the 7iS rulesets, when no buttons are pressed are rest-
ing and neutral respectively. When only the B key is pressed,
the action and modifier are projected energy and neutral re-
spectively.

Puppitor uses these actions and modifiers to map actions
to expressions of emotional affect. An affect vector contains
the set of affects which a character can expressed mapped to
their relative values. Only one affect can be expressed at a
time, corresponding to the affect with the highest magnitude,
the prevailing affect, with logic to handle the possibility of
multiple affects having the same value (Junius et al. 2022).

joy : 0.35
anger : 0.1
sadness : 0.54
worry : 0.77
fear : 0.54
love : 0.28

In the above example, the prevailing affect is worry. Each
affect listed in an affect vector must have a corresponding
entry in a character’s rule file which defines the values to be
added to the affect vector during an update. When a Puppi-
tor update is applied to an affect vector in a game loop, the
prevailing action’s value is multiplied by the prevailing mod-
ifier’s value (Junius et al. 2022). For example, if we take the
entry for joy pictured below and apply perform the projected
energy action and neutral modifier with the above affect vec-
tor, joy will then have the value of 0.0005 » 1.0 added,
resulting in a final value of 0.3505.

"joy" : {
"actions" : {
"resting" -0.0003,
"open_flow" 0.00004,

///’7 (resting, neutral)

(resting, tempo_up)

(resting, tempo_down)

(open, neutral)

(open, tempo_up)

affect vector

(open, tempo_down)

move

prevailing affect (closed, neutral)

(closed, tempo_up)

(closed, tempo_down)

(projected, neutral)

(projected, tempo_up)
\\\\> (projected, tempo_down)

Figure 2: This diagram shows the contents of a single Puppi-
tor graph node, the circle, and each outgoing edge, the rect-
angles.

"closed_flow" -0.0005,
"projected_energy" 0.0005

b

"modifiers" : {
"tempo_up" : 1.14,
"tempo_down" : 0.5,
"neutral" : 1.0

bo

"adjacent_affects" : {
"love" : 90,
"worry" : 10

b

"equilibrium_point" : 0.35

by

Translating Puppitor into a Graph Domain

When looking at Puppitor’s unmodified domain, we identify
the affect vector and the actions and modifiers as the most
important components of the system’s definition of its ex-
pressive possibility space. We choose to translate affect vec-
tors into graph nodes as each affect vector containing differ-
ent values represents a unique point in Puppitor’s expressive
space. Actions and modifiers are what allow movement be-
tween affect vectors and more generally are what constrain
the reachability of specific points in the possibility space.
For our translation, we define an edge between to nodes of
affect vectors as moves, the combination of Puppitor actions
and modifiers.

With affect vectors being nodes, each node’s outgoing
edges correspond to every possible Puppitor move. There are
four actions and three modifiers, making for a total of twelve
moves and therefore twelve edges. Additionally, Puppitor al-
lows any move to be performed even if it does not change the
affect vector, so every node will have twelve outgoing edges.
In turn, this means every node has at least twelve incom-
ing edges, as nodes with minimized and maximized values
in their affect vectors are reachable from huge numbers of

other nodes.

With this graph representation of Puppitor, with affect
vectors as nodes and moves as edges, we can begin to ap-
ply domain knowledge to A*. The need for additional in-
formation to guide A* through Puppitor’s rule space and
ultimately facilitate the analysis of paths means the graph
definition of affect vectors as nodes and moves as edges is
a starting point for the process of creating ERCs of the sys-
tem’s rulesets.

Adapting A* Search to Puppitor

Adapting A* search for use with the graph derived from
Puppitor focuses on four areas: the information in a node,
the cost function, the heuristic, and the optimization needed
to traverse a large, continuous space. The goal of each step
of this process is to enable A* to output paths with the infor-
mation required to produce ERCs.

An individual affect vector does not contain enough infor-
mation for A* to effectively search between nodes and also
does not easily expose the human perceivable parts of itself
on its own. To enable A* search and the creation of ERCs,
we must add the additional information of: the affect vec-
tor’s prevailing affect and the move which led to the particu-
lar affect vector. Without the prevailing affect stored as part
of the node, affect vectors which contain multiple values of
the greatest magnitude become ambiguous about which af-
fect a player sees when they reach the node. Additionally,
multiple affect vectors may share identical values but none
the less be perceptually distinct due to which moves were
made to reach them. As a result, we also store the chosen
move in the node. An example of the full node as repre-
sented to A* search would be:

affect vector: {
joy : 0.3505,

anger : 0.1,
sadness 0.54,
WOrry 0.77,

fear : 0.54,
love : 0.28
b
action: projected_energy,
modifier: neutral,
prevailing affect: worry

Due to the complexity of the possibility space cre-
ated by a Puppitor ruleset, having access to multiple edge
cost functions can aid our goal of mapping as much of
the space as possible. The first cost function we use is:
|Agoal_val|, which calculates edge cost as the magnitude
of the change in the value of the goal affect as determined
by the move performed. Using the example node, if our
goal is to express joy, our cost of reaching this node would
be 0.0005 as the move that got us to this specific node
was (projected_energy, neutral) which has an up-
date value of 0.0005 according to the ruleset we are using.
The costs of edges, when summed together, enable us to cal-
culate how far from the starting node we have traveled and
compare the relative difficulty of reaching a particular node.

In this case, as we have only moved one node from our start-
ing point, the total cost for determining the priority of the
example node is 0.0005.

The first cost function used generally leads to longer paths
as changes of greater magnitude cost more, so the search will
tend towards the smallest steps possible towards its goal.
A second cost function we developed is: ||Amax_val| —
|Agoal_val||. This formula for cost incentivizes A* to fo-
cus on moves that provide the greatest change in both the
currently prevailing affect and the goal value.

To create a heuristic function for Puppitor’s domain, we
must focus on the parts of the state preventing the goal af-
fect from becoming the prevailing affect to produce an esti-
mate of the distance to the search’s goal. When pathfinding
through expressive space, we do not prioritize reaching an
exact affect vector, rather, our goal is to reach the nearest
node where the prevailing affect is the goal affect. For this
purpose we use the following logic:

max_nodes = max (affect_vector)

max_value = value(max_nodes)

if goal in max_nodes and curr_affect # goal then
heuristic_value = big_num

else
heuristic_value = dist(max_value, goal_value)

end if

return heuristic_value

We consider the least desirable state to be one where the
goal affect is among the affects with the highest value but
is not the prevailing affect because any action taken that ap-
pears to increase the goal affect’s value further will not in
fact, which can cause the search to become stuck trying op-
tions which do not help it achieve its expressive goal. There-
fore we assign it an extremely low priority as a result. If
we are not in such an edge case, we estimate the distance
to our goal as the difference between the highest valued af-
fect and the goal affect. The heuristic value of our example
node is calculated as the distance between worry (0.77) and
joy (0.3505), resulting in a value of 0.4195. While a useful
estimate, this heuristic is inadmissible as there is no guar-
antee of the value of the greatest magnitude remaining con-
stant as Puppitor allows rules to update every available affect
value and our rules used in this case study follow this pat-
tern. However, we are not currently concerned with the opti-
mality of a path, only if one exists. It is beyond the scope of
this work to create an admimssible heuristic for such a new
and under-explored domain.

Our final addition to A* for use with Puppitor’s graph
representation is the “navmeshification” of the domain. To
equate this abstraction process we use with the use of A* to
pathfind across geometric spaces abstracted as navmeshes.
Puppitor rules can be written with very small update val-
ues. This authoring pattern is useful at creating continuous
experiences over time but when searching across expressive
space, it leads to huge numbers of repeated updates and slow
traversal.

When A* searches over a unabstracted Puppitor ruleset,
it is the equivalent of using A* for pathfinding over the
high-detail environment meshes of an area rather than the

abstracted navmesh layer, i.e. moving between every tiny
polygon of a cobblestone on a road. To abstract Puppitor
updates, we consider each update to affect vector values a
step. To avoid exploding the search space only to decide to
perform the same action numerous steps in sequence, we can
precalculate many steps in advance in the form of a multi-
plier.

With the example ruleset and affect vector, it would po-
tentially take a minimum of 839 individual steps for the joy
value to equal the worry value. Each step the search finds is
fractionally small progress towards the goal and as a result
many of the steps in the path will be performing the exact
same move over and over, wasting time on calculations. If
we instead pre-multiply a single step to instead be the equiv-
alent of 90 steps, changing the update value to be 0.045 and
one step from the initial value for joy to be 0.395, the min-
imum number of steps the search must calculate can be cut
to approximately 10 steps.

Running Searches and Analyzing Paths through
Expressive Space

For our search process, we picked six different starting affect
vectors, each with a unique prevailing affect so we would
cover multiple parts of the possibility space with even a low
number of trials. We then told A* to search for each affect in
our domain from each of these starting points. At most five
unique paths will be found, as the search simply continues
to perform the same move if it is already expressing the goal
affect. In addition we ran two additional trials using an alter-
native cost function we developed during the process of this
case study, the results of which can be found in figures 4 and
5.

The precalculation process requires us to reconstruct the
full path and interpolate between the nodes A* discovers.
Once A* finds a path between the starting point and the goal
affect, nodes are added back to the node sequence to “un-
roll” the precalculations into the individual steps required to
create a full path. The amount of reconstructed steps needed
per node is based on the step multiplier originally used to
precalculate the values. In our example, if the path A* cre-
ates is 10 steps, we must add an additional 89 steps between
each of these nodes to account for the precalculation multi-
plier of 90 and interpolate between the initial value for joy
of 0.35 and the next step’s value of 0.395.

When reconstructing the path between steps, it is crucial
to recalculate the prevailing affect with each step added. This
part of the process is necessary as Puppitor rules allow a sin-
gle update to change every value in an affect vector, mean-
ing these reconstructed steps can have different prevailing
affects than either node they are interpolating between. The
changes in prevailing affect contained in these interstitial
steps is hugely important to the creation of ERCs because
they provide a far more detailed view of the way a Puppi-
tor ruleset responds to a move than the abstracted A* nodes
alone are able to show.

Once we have a complete path, we can highlight impor-
tant points along the path, namely each step where the pre-
vailing affect changes and each step where a new move is
made. The highlighted path is now considered an ERC and

can be used to characterize and analyze a Puppitor ruleset.
The minute change in an affect vector’s values are largely
invisible until the prevailing affect changes. A new move be-
ing made changes the values being used to update the affect
vector, and as a result, will alter the rates that each affect’s
relative strength change. Highlighting both of these steps al-
lows us to analyze the responsiveness of a given ruleset, both
for how quickly a desired affect can be expressed as well as
the responsiveness of performing new moves. The shorter
the number of steps between any of these changes, the more
responsive the ruleset is to player input.

Case Study: ERC Map Analysis of a Puppitor
Ruleset

The goal of our analysis of paths through expressive pos-
sibility space is simultaneously to characterize the human
experience of specific expressive possibility spaces and to
provide further insight into the ways an Al character under-
stands and utilizes the space. The figures in this section all
represent sets of individual possible paths through small cor-
ners of a single Puppitor ruleset. Each figure uses a single
starting affect vector. Starting points that share a prevailing
affect also share an affect vector. Each flow path shows the
sequence of moves and affects to each other affect express-
ible from the starting point. These diagrams only represent
individual paths to single possible ways of expressing af-
fects and are not fully comprehensive captures of the en-
tire expressive possibility space. Visualizing the full expres-
sive possibility space of even a single Puppitor character is
far too large and complicated an undertaking for the scope
of this paper. Each node represents a change in prevailing
affect. Each column of nodes represents a different point
in time. Each flow path represents a unique move chosen.
When multiple paths use the same move, the size of the cor-
responding flow is increased. The numerical values on each
node correspond to the number of paths flowing into that
unique node. Each terminal node represents the expressive
goal of the A* search being reached.

For example in figure 1, there are three unique paths to ex-
pressing fear, each showing the expression of fear appear at
a different point in time thanks to the different moves cho-
sen. Additionally the two fear nodes sharing a time point
in time are never the less unique as they were reached us-
ing different actions. This distinction is further shown by
the differing moves and expressions flowing from them. Al-
ternatively, the same move was chosen to express worry on
two different paths. From this same point of worry, different
moves lead to unique paths to joy and love. Due to the incen-
tives provided by the cost function in this example, A* does
not choose the moves which will allow it to express its goal
in the shortest possible time frame. This decision-making is
most obvious where to express fear when fear is the goal, A*
chooses the (resting, neutral) move which is a slower
path than the (resting, tempo_up) move.

The nature of the precalculations used to optimize A*
mean that interstitial prevailing affects are not seen unless
they persist into the next node found. This is clear in the case
of figure 1 where joy briefly prevails before love, the latter

Joy to Each Affect, Cost=(|d_goal_val|)

anger
anger love

joy
4

sadness
sadness

2 1 worry
)] 1
I resting, neutral [] opentempo_up M closed, tempo_down
I resting, tempo_up M open, tempo_down [projected, neutral
Il resting, tempo_down M closed, neutral [projected, tempo_up
open, neutral I closed, tempo_up M projected, tempo_down

Figure 3: For some points in the expressive possibility
space, affect values are such that moves can have very sim-
ilar effects on multiple affects, hence why (projected,
tempo_up) leads to both anger and love and (closed,
tempo_down) leads to both sadness and worry. Also there
is no path to expressing fear long enough for it to appear in
a node visible to A*.

of which is the prevailing affect of the next node. Even if A*
doesn’t pay attention to these interstitial affects, they help
give a better idea of the play experience around a particular
point in the expressive possibility space.

Creating ERCs can also help find holes in the possibility
space that may not be easy to intuit from rules. In the case of
figure 3, the search did not find any path from this particular
joy node to a node with the prevailing affect of fear. This par-
ticular ruleset was designed to make fear mostly only briefly
prevail when moving between other affects, so its lack of
presence is expected. In other cases, having ERCs available
can help expose these gaps in the possibility space and allow
for intentional decisions to be made about them earlier in the
development process.

Using ERC to visualize the differences in searches, it
becomes clear that the cost function of A* has a notice-
able effect on the paths through the expressive possibility
space. This change is most obvious in comparing figures
3, which uses the |Agoal_val| cost, and 4, which uses the
[|Amax_val| — |Agoal_vall| cost, as every affect able to be
expressed has a unique set of moves to reach it in the lat-
ter, whereas there are only two paths in total in the former.
The point of these comparisons is not to provide a recom-
mendation for which formula produces better performances.
Rather, ERC is meant to help inform the iteration and devel-
opment of expressive characters by providing further insight
into both the contours of expressive possibility space and the
ways Al characters understand the domains they operate in.

Discussion and Future Work
By creating ERCs using Puppitor’s character rulesets, we
have been able to gain significantly more insight into the af-
fordances of the system as an expressive domain for players

Joy to Each Affect, Cost=(]|d_max_val| - |d_goal_val|)

T
’

sadness
1

sadness
1

~ anger

anger
1

Jjoy
4

love

1
I resting, neutral [J opentempo_up M closed, tempo_down
I resting, tempo_up M open, tempo_down [projected, neutral
Il resting, tempo_down [l closed, neutral [projected, tempo_up
open, neutral I closed, tempo_up M projected, tempo_down

Figure 4: Altering the cost function leads to fully unique
paths to each other expressible affect when starting at the
same point of worry in the possibility space. These partic-
ular paths all exist inside of one precalculated step of A*,
hence the lack of variation in moves and no shared points in
time.

and developers working in this area. On the player-oriented
side, the use of ERCs can help identify overly homogeneous
areas of a Puppitor ruleset and affects that are complex or
impossible to express from certain points in a ruleset. For de-
velopers, having a fast way to view the effects that changes
in domain knowledge and representation have on Al charac-
ters allows for much more deliberate iteration.

Our initial phase of analysis was focused on evaluating
the responsiveness of ERCs created from a Puppitor ruleset.
We define this property as the property of pathways which
only require a single move to be made to see a change in the
prevailing affect. The generated maps (figures 1, 3 , 4, and
5) show that the chosen ruleset often exhibited responsive-
ness in the individual ERCs, where individual move choices
frequently led to changes in prevailing affect before a new
move was considered. The starting points we chose for our
figures, worry and joy, were chosen to show the effect the
values inside an affect vector have on the difficulty and re-
sponsiveness of certain affects. We designed the worry start-
ing point to make expression of a subset of affects difficult,
shown in figures 1 and 5. Even then, the only affect goal
which required A* to perform a single action for multiple
nodes in its search was sadness. By evaluating a Puppitor
ruleset by the responsiveness of the ERCs it produces, we
can highlight the relative player experience of expressing af-
fects from different locations in the possibility space.

The creation and analysis of ERCs for Puppitor enabled
informed iteration of domain knowledge for A* as well
as garnered insight into the way that domain knowledge
changes the expressive performance of the search. We orig-
inally only used |Agoal_val| as the cost function to pro-
duce ERCs, but noticed that it rarely made paths containing
obvious move choices when comparing its decisions with
the ruleset definition. These comparisons led us to the re-

Worry to Each Affect, Cost=(||d_max_val| - |d_goal_val]|)

love

worry

2 m e
worry
5 .
Joy

1
sadness
)])
fear
fear p)

2 fear

L) anger joy
1

I resting, neutral [] opentempo_up M closed, tempo_j:lown
I resting, tempo_up [open, tempo_down [projected, neutral
Il resting, tempo_down [l closed, neutral [projected, tempo_up
[open, neutral I closed, tempo_up M projected, tempo_down

Figure 5: A different cost function doesn’t always lead to
dramatically different paths through the possibility space,
but affects that can be easily expressed are much more likely
to be found early in the search.

alization that to gain more full view of even these small
sections of expressive possibility space, a single set of do-
main knowledge would not be sufficient, hence our usage of
[|Amaz_val| — |Agoal_val|| as an additional cost function.
With the two cost functions side by side, we could then char-
acterize the performance styles they preferred, with the first
(|Agoal_val]) preferring more subtle moves and the second
([|Amax_val| — |Agoal val||) preferring slightly more ac-
tive moves.

Comprehensively visualizing the information provided by
ERC:s is a challenge due to the nuances in the sequences of
actions and their relationship to the surfaced player feedback
present even in smaller domains like Puppitor. Knowing this,
we note that while the Sankey diagrams our analysis of
ERC:s produced prove useful in illustrating the flow between
affects and their relationship to player actions, these dia-
grams abstract away some important information for analyz-
ing game feel. When describing these diagrams, we stated
that nodes within the same column occur at the same point
in time. The Sankey diagrams do maintain some of the in-
formation about the progression of time through nodes’ col-
umn positions, but they flatten the details about the exact
progression over time. This is especially notable for both
worry trials (shown in figures 1 and 5). The diagrams can-
not accurately capture the fact that the transition from worry
to joy when performing the (projected, tempo_down)
move occurs in a single step. As a result, further work must
be done to enable the creation of more comprehensive visu-
alizations of expressive possibility spaces.

With this in mind we want to highlight the complexity
of the expressive possibility spaces we discuss in this pa-
per or, more broadly, the difficulty of visualizing playtest-
ing data (Agarwal et al. 2020). While we have been able to
visualize small pieces of a Puppitor ruleset, current widely
available visualization techniques limit us to a single start-
ing point per diagram. The combinatorial explosion of even
two or three starting points in a single diagram quickly ren-

ders them unusable for the purpose of analysis. Mapping
every path through an expressive possibility space, and im-
portantly presenting such paths in a user-friendly way, is an
open research problem and far beyond the scope of this pa-
per. With that said, ideally we will eventually be able to cre-
ate tools to allow the full searching and mapping of expres-
sive possibility spaces and effectively illustrate the relation-
ships between clusters of paths. This fits the broader trend
of games being incredibly difficult artifacts to adapt to data
visualization. We plan to pursue the development of more
effective visualization techniques for expressive possibility
spaces in the future.

Puppitor provided an ideal testing platform for the cre-
ation and analysis of ERC:s. It features clearly defined states
with a well defined relationship to actions a player could per-
form, complete with values that could easily be turned into
domain information for A* search. This clarity in the origi-
nal domain made for a relatively straightforward translation
process, but this will not necessarily hold true for other cur-
rent and future expressive domains which ERCs may be use-
ful to. Additionally, Puppitor has a built in way of signaling
changes in its state that are human perceptible, its prevail-
ing affects. Rather than having to derive a novel method for
discovering important state transitions, Puppitor’s prevailing
affect system make this a core feature of its interface. The
system’s affordance therefore lightens the translation and
adaptation burden by removing the need to synthesize a new
approach to identifying human perceivable state transitions.
Through our experience creating ERCs for Puppitor, we rec-
ognize that not all domains which can benefit from ERCs
would have these features built in. As our current work with
ERCs shows, we hope to encourage more systems to expose
and highlight state changes that impact player experience.

Conclusion

In this paper we describe a method of automated playtesting
which produces expressive response curves (ERCs) which
can then be combined into a map to characterize the fea-
tures of an expressive possibility space. Through our case
study, we demonstrated that the insights provided by ERC
maps allow for more informed reasoning about the domain
on the part of designers, which in turn can lead to new ways
of guiding A* performance within an expressive possibilty
space. Combined with the more intuitive view of an expres-
sive possibility space facilitated by ERCs, we can gain a
far better understanding of the complexity of expressive do-
mains and the nuances of their relationship to the develop-
ment of Al characters focused on performance and expres-
sion. We hope that our work with ERCs inspires more work
in the future focused on advancing our understanding of the
player experience created by expressive Al models.

References

Agarwal, S.; Herrmann, C.; Wallner, G.; and Beck, F. 2020.
Visualizing ai playtesting data of 2d side-scrolling games. In
2020 IEEE Conference on Games (CoG), 572-575. IEEE.
Ariyurek, S.; Surer, E.; and Betin-Can, A. 2022. Playtesting:
What is Beyond Personas. IEEE Transactions on Games.

Barthet, M.; Khalifa, A.; Liapis, A.; and Yannakakis, G.
2022. Generative personas that behave and experience like
humans. In Proceedings of the 17th International Confer-
ence on the Foundations of Digital Games, 1-10.

Chaslot, G.; Bakkes, S.; Szita, I.; and Spronck, P. 2008.
Monte-carlo tree search: A new framework for game ai.
In Proceedings of the AAAI Conference on Artificial Intel-
ligence and Interactive Digital Entertainment, volume 4,
216-217.

Chaslot, G.; Saito, J.-T.; Bouzy, B.; Uiterwijk, J.; and Van
Den Herik, H. J. 2006. Monte-carlo strategies for computer
go. In Proceedings of the 18th BeNeLux Conference on Ar-
tificial Intelligence, Namur, Belgium, 83-91.

Compton, K. 2016. So you want to build a generator... Blog
post accessed on 5/26/2023.

Cook, M.; Gow, J.; Smith, G.; and Colton, S. 2021. Danesh:
Interactive tools for understanding procedural content gen-
erators. IEEE Transactions on Games, 14(3): 329-338.
Devlin, S.; Anspoka, A.; Sephton, N.; Cowling, P.; and Rol-
lason, J. 2016. Combining gameplay data with monte carlo
tree search to emulate human play. In Proceedings of the
AAAI Conference on Artificial Intelligence and Interactive
Digital Entertainment, volume 12, 16-22.

Gabler, K.; Gray, K.; Shodhan, S.; and Kucic, M. 2005. How
to prototype a game in under 7 days. Gamasutra, October,
26.

Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. IEEE transactions on Systems Science and Cybernet-
ics, 4(2): 100-107.

Hicks, K.; Dickinson, P.; Holopainen, J.; Gerling, K.; et al.
2018. Good game feel: an empirically grounded framework
for juicy design. In Proceedings of the 2018 DiGRA Inter-
national Conference: The Game is the Message. DiGRA.

Hicks, K.; Gerling, K.; Dickinson, P.; and Vanden Abeele,
V. 2019. Juicy game design: Understanding the impact of
visual embellishments on player experience. In Proceedings

of the Annual Symposium on Computer-Human Interaction
in Play, 185-197.

Higgins, D. 2002. Generic A* pathfinding. Al Game Pro-
gramming Wisdom, 114-121.

Holmgérd, C.; Green, M. C.; Liapis, A.; and Togelius, J.
2018. Automated playtesting with procedural personas
through MCTS with evolved heuristics. IEEE Transactions
on Games, 11(4): 352-362.

Holmgard, C.; Liapis, A.; Togelius, J.; and Yannakakis,
G. N. 2016. Evolving models of player decision making:
Personas versus clones. Entertainment Computing, 16: 95—
104.

Horn, B.; Miller, J.; Smith, G.; and Cooper, S. 2018. A
Monte Carlo approach to skill-based automated playtesting.
In Proceedings of the AAAI Conference on Artificial Intel-
ligence and Interactive Digital Entertainment, volume 14,
166-172.

Jacobsen, E. J.; Greve, R.; and Togelius, J. 2014. Monte
mario: platforming with mcts. In Proceedings of the 2014

annual conference on genetic and evolutionary computation,
293-300.

June, N.; Murray, R.; Marshall, C.; Duplantis, T.; Karth, L.;
and Kreminski, M. 2021. Tracks in Snow. [PC Digital
Download itch.io], USA: Quakefultales.

Junius, N.; Mateas, M.; Wardrip-Fruin, N.; and Carstensdot-
tir, E. 2022. Playing with the Strings: Designing Puppitor
as an Acting Interface for Digital Games. In Proceedings of
the AAAI Conference on Artificial Intelligence and Interac-
tive Digital Entertainment, volume 18, 250-257.

Keehl, O.; and Smith, A. M. 2018. Monster Carlo:
an MCTS-based framework for machine playtesting unity
games. In 2018 IEEE Conference on Computational Intelli-
gence and Games (CIG), 1-8. IEEE.

Kybartas, Q.; Verbrugge, C.; and Lessard, J. 2020. Tension
space analysis for emergent narrative. IEEE Transactions on
Games, 13(2): 146-159.

Liapis, A.; Holmgard, C.; Yannakakis, G. N.; and Togelius,
J. 2015. Procedural personas as critics for dungeon gen-
eration. In Applications of Evolutionary Computation:
18th European Conference, EvoApplications 2015, Copen-
hagen, Denmark, April 8-10, 2015, Proceedings 18, 331-
343. Springer.

Mugrai, L.; Silva, F.; Holmgard, C.; and Togelius, J. 2019.
Automated playtesting of matching tile games. In 2079
IEEE Conference on Games (CoG), 1-7. IEEE.

Orkin, J. 2005. Agent architecture considerations for real-
time planning in games. In Proceedings of the AAAI Con-
ference on Artificial Intelligence and Interactive Digital En-
tertainment, volume 1, 105-110.

Osborn, J. C.; Samuel, B.; and Mateas, M. 2018. Visualiz-
ing the strategic landscape of arbitrary games. Information
Visualization, 17(3): 196-217.

Pfau, J.; Liapis, A.; Volkmar, G.; Yannakakis, G. N.; and
Malaka, R. 2020. Dungeons & replicants: automated game
balancing via deep player behavior modeling. In 2020 IEEE
Conference on Games (CoG), 431-438. IEEE.

Pfau, J.; Liapis, A.; Yannakakis, G. N.; and Malaka, R.
2022. Dungeons & replicants II: automated game balancing
across multiple difficulty dimensions via deep player behav-
ior modeling. IEEE Transactions on Games.

Powley, E. J.; Colton, S.; Gaudl, S.; Saunders, R.; and Nel-
son, M. J. 2016. Semi-automated level design via auto-
playtesting for handheld casual game creation. In 2016

IEEFE Conference on Computational Intelligence and Games
(CIG), 1-8. IEEE.

Rabii, Y.; and Cook, M. 2023. Why Oatmeal is Cheap: Kol-
mogorov Complexity and Procedural Generation. In Pro-
ceedings of the 18th International Conference on the Foun-
dations of Digital Games, 1-7.

Smith, G.; and Whitehead, J. 2010. Analyzing the expres-
sive range of a level generator. In Proceedings of the 2010
workshop on procedural content generation in games, 1-7.
Summerville, A. 2018. Expanding expressive range: Evalu-
ation methodologies for procedural content generation. In

Proceedings of the AAAI Conference on Artificial Intelli-
gence and Interactive Digital Entertainment, volume 14,
116-122.

Swink, S. 2008. Game feel: a game designer’s guide to vir-
tual sensation. CRC Press.

Zook, A.; Harrison, B.; and Riedl, M. O. 2015. Monte-carlo
tree search for simulation-based strategy analysis. In Pro-
ceedings of the 10th International Conference on the Foun-
dations of Digital Games.

