
UNIVERSITY OF CALIFORNIA
SANTA CRUZ

PUPPITOR: BUILDING AN ACTING INTERFACE FOR
VIDEOGAMES

A thesis submitted in partial satisfaction of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTATIONAL MEDIA

by

Nick Junius

September 2019

The Thesis of Nick Junius
is approved:

Professor Noah Wardrip-Fruin, Chair

Professor Michael Mateas

Quentin Williams
Acting Vice Provost and Dean of Graduate Studies

Copyright c© by

Nick Junius

2019

Table of Contents

List of Figures v

Abstract vii

1 Introduction 1
1.1 System Design Goals . 5
1.2 Research Questions . 7

2 Existing Game Case Studies 8
2.1 Façade . 8
2.2 Prom Week . 10
2.3 Versu . 12
2.4 La Dama Boba . 13

3 The Crossover of Games and Theater 15
3.1 Acting and Constraints . 16
3.2 Aristotle and the Causes . 19
3.3 Performing a Role . 21

4 Theatrical Theory and Practices 25
4.1 Stanislavsky and Energy . 26
4.2 Zeami and Nō Theater . 31
4.3 The Viewpoints . 35

4.3.1 The Viewpoints of Time . 36
4.3.2 The Viewpoints of Space . 37
4.3.3 Soft Focus . 38

5 System Description 40
5.1 System Introduction . 40
5.2 Overview . 43
5.3 Input Mapping . 47
5.4 Updating the Affect Vector . 48

iii

5.5 Animating the Gesture . 51
5.6 Choosing a Prevailing Affect . 53
5.7 Rules for Emotional Affects . 55
5.8 Character Expression . 58

6 Future Work and Conclusion 63
6.1 Future Work . 63
6.2 Conclusion . 65

Bibliography 67

A Input Mapping Module 75

B Affect Update Module 80

C Animation State Machine Module 84

D Example Rule File 89

iv

List of Figures

1.1 Aristotle’s distinction between plot and story as diagrammed by James
Bierman. For Aristotle (and ancient Greek theater) the playwright was
responsible for choosing which events in a given story the audience would
see, not for creating both the plot and the story from scratch. [1]. 6

4.1 Performance of Anton Chekhov’s The Cherry Orchard by the Moscow Art
Theater in 2004 (Renata Litvinova as Ranevskaya and Andrey Smolyakov
as Lopakhin pictured) [14]. The Moscow Art Theater has been a focal
point of the continued development of Stanislavsky’s methodology and
was where he developed much of his philosophy. 28

4.2 Nō performances feature dance, live music, and song to create a stylized
performance where the actors are the center of attention [67]. 32

4.3 Viewpoints training emphasizes being in tune with one’s own body as
well as other performers. Many of the techniques used incorporate at
least some degree of activity to create group cohesion and allow for trust
to be built during the rehearsal process [43]. 36

5.1 An overview of the flow of information between user input, Puppitor’s
modules, the display, and other systems. The primary information being
passed between Puppitor’s modules is the gesture state (interpreted from
the keyboard and mouse input) and affect values stored in an affect vector. 46

5.2 A breakdown of Ryu’s crouching medium punch into the three main
phases of a move in a fighting game: startup, active, and recovery and
how these calculations factor into having an advantage when a move suc-
cessfully connects with an opponent [24]. 53

5.3 Excerpt of a rule file using Descartes’ six universal passions as the set of
affects. Each affect tracks how each possible energy state will update its
value, how each tempo modifier will alter that update value, what (if any)
other affects are connected to it, and the equilibrium point associated
with the affect (for the target value for the affect value to trend towards
while performing the resting gesture). 56

v

5.4 Rough key pose sketches for one of the characters in the game being built
using Puppitor. The poses marked 1 and 3 are the base poses for the
looping sections of, in this case, the resting and closed flow gestures. The
middle pose is a rough in between frame for use as part of the transition
between the resting and closed flow gestures. 60

vi

Abstract

Puppitor: Building an Acting Interface for Videogames

by

Nick Junius

Videogames have historically relied on players picking what their characters say

or do from a list or entering their desired action into a text parser and then having those

intentions carried out in some form by the game characters. There is an understanding

that a videogame player exists somewhere between an audience member and a stage

actor—but rarely are players allowed to express themselves in a manner similar to

an actor. This thesis argues that the acting and directing knowledge of theater is a

potentially bountiful resource for designing player and NPC interactions and proposes

the reversal of the player picking an action and the characters acting out the response:

have the player gesture and move as their character and interpret those actions to alter

the lines of dialogue characters are speaking (or in this case, displaying on screen).

To illustrate this, this thesis presents a literature review of theatrical methodology, its

existing relationship to games, and a survey of projects in the interactive narrative

and character interaction spaces. The chosen theater practices provide a useful basis

for a new type of interaction between players and non-player characters. Additionally,

particularly when looking at acting practices, their major concerns with the relationship

between character and actor provide useful language to describe and further explore the

relationship between the player and their avatar. As part of this exploration, we created

vii

Puppitor, a rules-based input detection system that translates mouse and keyboard

inputs into emotional affect values for use in changing the tone and direction of dialogue

heavy scenes. We discuss the design principles behind Puppitor’s architecture, how

its inspiration from theater and fighting games influenced the implementation of each

system module, authoring of rulesets and animations, and propose a direction for further

work in the realm of interactive drama and storytelling more broadly.

viii

Chapter 1

Introduction

Realtime interactions with non-player characters (NPCs) in video-games, if there is any

incorporation of movement through space, commonly put a large degree of emphasis

on these same NPCs’ reactions and behavior to create engaging experiences. Most

of these reactions and behaviors have revolved around physical combat or violence of

some sort and, commonly, when games featuring this kind of gameplay want to have

character focused, narrative moments, they take away much of the spatial and realtime

elements in favor of dialogue trees. Popularized in 1997 by Fallout [46], much of the

work advancing character interaction has been focused on graphical fidelity and voice

acting rather than on changing how the player interacts, as works like The Witcher

3 [48], Dragon Age: Inquisition [13], and Telltale Games’ projects in the past decade

have shown. With this dichotomy of interaction, even when the player has built their

character themselves, they are moving between acting as their character (while walking

around and in combat) and poking at their character’s personality (while talking to

1

NPCs).

This thesis focuses on realtime gameplay due to its similarities to stage act-

ing’s live nature and our goal of building a system inspired by physical acting practice.

Additionally, while evaluating Façade’s user interface, Sali et al found that players en-

joyed the realtime, natural language understanding version of the game, in spite of the

difficulties and systemic breakdowns they encountered, when compared to the more

industry-standard menu options displaying full lines of dialogue or short abstract re-

sponses [56]. With this in mind, we know there is something to the live performance

aspect and want to further explore that space, particularly because the industry still

heavily relies on dialogue trees and other more turn-based approaches to character in-

teraction.

When viewing the distinction between the spatial gameplay and dialogue trees,

it was useful to categorize them as operating at the acting level and editing level respec-

tively. Interacting at the acting level involves interacting in realtime with a playable

model of some kind of character behavior, including combat and communication. In-

teracting at the editing level does not commonly involve a playable model or realtime

interaction, though it may involve one of these elements (as Prom Week [39] does). As

an example, “The Last Wish,” a quest in The Witcher 3, involves the player fighting a

djinn (a wish granting monster) and later, during a conversation, choosing whether or

not Geralt and Yennefer should reaffirm their relationship. Fighting the djinn relies on

the game’s playable model of combat (the acting level) while the conversation between

Geralt and Yennefer is a siloed, pre-authored dialogue tree (the editing level).

2

Even when games feature friendly NPCs, as Bioshock: Infinite [20] does, the

player cannot interact with them at a similar level to their foes. While the player’s

primary companion, Elizabeth, might intelligently move and act based on where the

player is looking at any given time [65], that is largely the extent of the free form,

non-combat interactions. There are no verbs beyond walk and look the player has to

interact with their companion, only the overloaded “interact with” button presses to

begin little scripted vignettes. Still, having a character that understands their spatial

relationship to the player for reasons other than combat is a very real step towards new

kinds of gameplay.

In 2016, both Oxenfree [60] and Titanfall 21 [15] allowed players to talk to

characters while moving around their environments, in contrast to traditional interactive

dialogue scenes. With that said, neither game placed much weight on what the player

was doing while talking with other characters. They still rely on the player picking

from a set number of choices and playing certain animations based on what the player

picked. What they do provide is a step towards more real time interaction between

players and NPCs as they naturally incorporate character silence rather than needing

to add a timer or extra dialogue option. These two games still ask the player to operate

as an actor and editor even as they ask that the player does both at the same time.

Additionally, the interaction the player has with the game’s plot is still very much at

the editing level and whatever physical acting the player may do as part of roleplaying

means nothing to the game’s systems.
1These are not the first games to allow action to continue during dialogue. Starflight [63] allowed

both the player and NPCs to use all their ship functions while in conversations, including firing weapons.

3

Theater provides a framework for translating spatial elements into narrative

meaning. There have been repeated calls to look to theater for design inspiration [28]

[34] [64], but specifically how actors and directors use human physicality and location

in space to create emotional responses has largely been ignored. We pose gesture and

movement through space as two possible starting points for incorporating this theatrical

knowledge into game and system design. This thesis is primarily concerned with gesture,

though there is still an eye towards the creation of a narrative nav-mesh, spatial markup

and tagging to allow game systems and NPCs to interpret player actions narratively.

In this thesis we explore the theory and design of character interactions at an acting

level, focusing on theater’s knowledge of physicality and practices of physical acting as

a model. For our purposes, physical acting, with regard to player avatars, refers to the

affordances and actions available to the player, not that a player must perform specific

physical actions themselves as input.

We take this view of physical acting, in part, because of the lower technical

burden of reading inputs using more traditional interfaces, such as the mouse and key-

board or Xbox 360 gamepads, compared to real world physical gestures. It also allows

us to further explore the relationship between player and avatar as we attempt to create

new types of interaction using these common interfaces. Furthermore, we seek to cre-

ate a constrained environment that leverages players’ existing experience with realtime,

combat focused games to hopefully make communicative realtime gestures more acces-

sible. Asking players to gesture using their own body removes some of those constraints

and does not necessarily increase player engagement with characters—it may even make

4

acting as another character more difficult [11]. For this reason we view work like Project

IMMERSE [58] as falling beyond the scope of this work.

Our goal with this thesis is threefold. First, to provide an overview of some

of the existing arguments that have been made about the relationship between theater

and interactive narrative. Second, to identify relevant insights from these theories, as

well as theories and practices of physical acting, to inform the creation of a computa-

tional system (briefly described in the following section) that enables game players to

engage in physical acting, using the bodies of their avatars, as the primary interactive

component. Finally, to discuss the technical details and design specifics of the system,

named Puppitor.

1.1 System Design Goals

When discussing plot and story, we use Aristotle’s definitions [1]. The story is made up

of events the audience may or may not see. The plot is made up only of the events the

audience experiences. For our purposes, these definitions are useful in describing the

relationship between the full extent of the content authored, largely dialogue fragments

(the story) and what any given playthrough will expose, the completed lines actually

displayed (the plot).

In Puppitor, the primary actions available to both the player and NPCs are

a constrained set of gestures with changing the speed of a gesture being a secondary

action. To avoid overwhelming the player with granularity, we decided to limit the

5

Figure 1.1: Aristotle’s distinction between plot and story as diagrammed by James
Bierman. For Aristotle (and ancient Greek theater) the playwright was responsible for
choosing which events in a given story the audience would see, not for creating both the
plot and the story from scratch. [1].

number of gestures (beyond the default resting gesture) to three and speeds (beyond

the default neutral speed) to two. Additionally, the length of time a gesture takes is

directly under the player’s control. They simply need to press and hold the button

corresponding to a particular gesture and then release it when they want to switch to a

different gesture.

Our overarching goal is to create a set of systems to allow a player, through

their character’s gestural and spatial physicality, to alter lines of dialogue at both the

generation stage and the display stage (similar to line reads in acting). The rules

governing what and how any given character can express themselves are designer defined

and allow the range of emotions characters in a particular scene or plot should be able to

express. These rules define how, for Puppitor, gestures change a character’s expressed

emotional affects and in the future, how another system would use rules attached to

a narrative nav-mesh would use a character’s spatial movement as part of the update

cycle.

6

1.2 Research Questions

The original conceptualization of the system that would eventually become Puppitor

was forged out of a simple premise: What if we reversed the interaction of a dialogue

tree? Instead of having the player pick a line of dialogue and having the characters

animate and move accordingly, what if the dialogue was tailored to how a player and

NPC acted physically towards each other? While we propose the idea of a narrative nav-

mesh, it turns out making a brand new interaction paradigm is a lot of work. The time

it took to research and synthesize a variety of theater practices into a somewhat simple

system meant that we could only focus on one part of the idea we originally proposed

in Towards an Expressive Input for Character Dialogue in Digital Games published at

the 2019 Foundations of Digital Games conference [25]. Thus this thesis answers the

following research questions:

• Where has the focus of character interaction in interactive drama been in the past?

• What are some theatrical practices that can be drawn from to create a simplified

model of physical acting?

• What does an implementation of part of such a model look like?

• What are authoring considerations for such a system?

• Where do we go from here?

7

Chapter 2

Existing Game Case Studies

In this chapter we will briefly look at various games to come out of the interactive

narrative space and how their gameplay relates to our discussion of theater’s usage of

physicality and space as well as plot and story structure. Not all of the games in this

chapter are interactive dramas or even explicitly interactive narratives but each game’s

focus is the interaction between characters, even if the player does not have an avatar.

2.1 Façade

Mateas and Stern’s Façade [36] is explicitly an interactive drama and focused extensively

on implementing the neo-Aristotelian model of drama Mateas outlined [34]. Integral to

the interaction model was the concept of discourse acts, actions the player expressed

through dialogue with the characters using a text parser, rather than the physical acts

of firing a gun or obstacle avoidance [37]. Additionally, the two NPCs present, Grace

and Trip, interpret the player’s lines through abstract social games. These include

8

the affinity game, responsible for determining whose side the player is taking; the hot-

button game, responsible for surfacing incendiary topics, exposing character backstory,

and updating the affinity game; the therapy game, responsible for updating Grace and

Trip’s self-realization about their problems [37].

Much of the structure of Façade is rooted in the concept of beats, primarily

to afford a level of autonomy to the characters within the plot [35]. Due to beats

having an underlying canonical structure [37], we can characterize the drama manager

in Façade as reconstructing the plot to fit reasonably well with whatever the player

does. Additionally, Façade selects new beats to add to the plot based, in part, on an

Aristotelian tension arc [37].

When outlining Façade, Mateas pointed to the importance of embodied in-

teractions, including moving through the environment, interacting with objects, and

physical contact with characters [34]. In the final experience, these are implemented

but not foregrounded to the same degree as the player typing dialogue. Compared to

our discussion of physicality in theater, Façade is light on those elements though it

still exists at the acting level because the game treats the player first as a character

in the world and expects them to infer the effect of their behavior through a playable

model [37]. The way Façade uses its real-time playable model of character dialogue to

redirect the plot is a major inspiration for our proposed relationship between player

movement and character dialogue.

For our proposed interface, we want to provide the player with something

more constrained than the free form text input of Façade, in part to avoid unproductive

9

misinterpretations of input. With that in mind, we still want to build an expressive space

of player driven gesture—and use the more constrained space to enable players to more

easily understand the rules governing their interactions than some of the abstracted

games in Façade would allow [37].

2.2 Prom Week

Unlike the other games in this chapter, Prom Week is a social interaction game where

the player is not a character and exists more as the narrative causality driving certain

characters. Integral to Prom Week’s design was the concept of a “social physics engine,”

invoking the emergent properties of physics simulation in many modern games [41].

The primary point of interaction a player has in the game is choosing what social

action a character should take, chosen from a list organized by characters’ desires [38].

Characters’ desires are determined by the social considerations created by the underlying

social network [38]. Once an action is chosen for a character, it is up to the other

character to decide whether to accept or reject the intent behind the action (like being

asked out on a date) [40]. Though Prom Week bases its social exchanges between

characters on Goffman’s dramaturgical analysis and Berne’s psychological games, these

actions’ focus on characters changing their relationships [38] in fact creates the same

type of stage action Stanislavsky describes.

The player’s relationship to Prom Week and all of its characters exists at the

editing level even though there is an underlying playable model of social interaction.

10

This is because of the game’s turn-based nature. That said, the game does allow for

creative, combinatorial approaches to character action through the creation of a story

world without explicit connections between actions and world states [38]. Additionally,

while the characters do play stylized animations1 in response to events, they are less

character-specific than our goals for player controlled gestures and movement. Our

main interest in Prom Week is its distillation of theories from the social sciences and

observations from the operations of media into working, playable models in a digital

game. Also important to us are the game’s affordances for plot generation stemming

from the variety of approaches to problem solving it allows [42]. While Prom Week is

not expressly a story generator, that its primary concern was with characters’ goals, not

with a well structured plot, allows for a significant amount of transformational variety

and player expression in the creation of a plot through a given scenario.

This variety in the plots through a given scenario was facilitated by Comme

il Faut (CiF), the social system of Prom Week, and its decoupling of character, role,

and action within the system [41]. Another important goal of CiF was to reduce the

burden of authoring social exchanges compared to the behaviors of Façade [41]. This

modularity lends lends itself to our goal of building plots based on players’ actions,

incorporating the Viewpoints’ emergent view of movement, and our observation of the

potential transformational variety in Stanislavsky’s concepts of leading characters and

objects bearing psychological load.
1Similar to the expressive gestures described in the Viewpoints.

11

2.3 Versu

Versu is an interactive drama built using autonomous characters constrained by social

practices (recurring social situations) [16]. Characters’ actions arise from their own

beliefs and desires—rather than characters being forced into acting based on a drama

manager [16]. Additionally, Versu decoupled social practices from characters and char-

acters from roles, similar to what was done in Prom Week, to allow for significantly more

possible variations within a story [16]. By making everything modular and simulation

driven, one of Versu’s goals, along with its button clicking interface, was to make the

process of understanding the rules of the world easier, and thus allowing the player to

act in a more informed way than in Façade [16]. With the type of interface we’ve been

describing, we want to split the difference between Versu’s explicit, always valid, set of

choices and Façade’s purposefully obfuscated underlying systems. As described in the

section on the Viewpoints, we believe that everything the player can do should be valid

to the simulation (as Versu does) though we also see the value in the hiding some of the

details about the underlying system to further ground the player in the experience (as

Façade does).

What the player is physically doing in Versu is no different from our earlier

characterization of dialogue trees and Prom Week’s interaction, meaning the interface

itself exists at the editing level. To return to Zeami’s comparison of actors to puppets,

Versu makes the existence of the strings controlling the puppet central to the experi-

ence. Though we want to create something more continuous and graphically focused

12

than Versu, its autonomous approach to characters, along with its similarities to Prom

Week, connect it to our view of plot construction, the emergent properties of movement

according to the Viewpoints, and Stanislavsky’s concept of the leading character. With

this in mind, our proposed system falls somewhere between Prom Week and Versu at

one end and Façade at the other. We want to keep the real time interactions and com-

positional elements of Façade but constrain the base actions available to the player to

allow them to get a clearer understanding of the rules governing the interactions as

described in Prom Week and Versu.

2.4 La Dama Boba

La Dama Boba is an adventure game adaptation of the Lope de Vega play of the same

name designed to help introduce high school students to theater and the specifics of the

play [33]. The adaptation process was heavily influenced by the Americanized version

of Stanislavsky’s work [33] we discussed earlier. Once Manero et al had picked the

player character, Laurencio (the male lead of the original play), they used Stanislavsky’s

concept of the superobjective for a single character to choose what needed to be cut

from the script without breaking their leading character’s plot line [33]. They then

separated Laurencio’s arc into separate milestones to then turn that section of the play

into one of five adventure game challenges that made up the game’s plot [33]. Each

character was given an agenda to facilitate conflicts and engage the player through

Stanislavsky’s definition of stage action [33]. Additionally, the game was made non-

13

linear as certain milestones were considered to be semi-independent and described as

creating a performative space [33].

We find the usage of Stanislavsky’s objectives interesting from an adaptation

perspective but when looking at a playthrough of the finished game [12], the connection

to Stanislavsky’s methods are somewhat difficult to see and could be characterized as the

Tale-Spin Effect2 [66] in relation to the design of a game rather than its processes. Some

of this is due to the game explicitly being designed as an adventure game and within the

constraints of adapting an existing play. In our view, the player’s interactions with the

game exist at the editing level because of its adherence to adventure game conventions,

and thus lack of an underlying playable model, even modeling one of its challenges

directly on the battle of wits in The Secret of Monkey Island [33]. Additionally, the

description of the adaptation process is mostly concerned with the design-time writing

of characters instead of how characters express themselves in the final artifact.

There are two instances where the game does allow the player to get closer

to acting as their character rather than editing them. First, the player must complete

a Redonilla3 [33] and is actually finishing sentences on the page. Second, the player

must find and correct spelling errors in a poem [33], again on a page rather than simply

telling the character what to do. In our view, the La Dama Boba game provides an

example of the limitations of adapting novel design approaches within the constraints

of existing game design paradigms.

2When the output of a process hides the underlying complexity of that process.
3A form of Spanish poetic composition [33].

14

Chapter 3

The Crossover of Games and Theater

Aristotle has been one of the more influential guides for discussing the relationship

between games and theater since Brenda Laurel’s dissertation and subsequent publica-

tion of Computers as Theater [28] [34]. More recently there has been more interest in

Konstantin Stanislavsky’s acting methods as a lens for understanding interactive nar-

rative [64] and as a game design methodology [33]. In this chapter we focus on how

theater has influenced the current understanding of games and interactive drama as well

as how our proposal for building systems inspired by theatrical acting and directing fits

into this prior work.

We have chosen to avoid discussing the work done applying Boal [17] and

Brecht [57] to videogames in significant detail in this chapter primarily because of our fo-

cus on the transformational properties of more traditional acting techniques [51] [29] [2].

For Boal’s Forum Theater, the spect-actors1 would take turns playing the protagonist
1The audience members are participants, not simply passive observers in Theater of the Oppressed.

15

to explore how the protagonist’s oppression could be broken [17]. In a sense, Boal’s

practice was more akin to the rehearsal described by more traditional theater practi-

tioners [51] [29] [2] while we are more interested in what it means to be asking the player

to be a more traditional type of actor during a performance.

Brecht’s view of the character and actor as remaining distinct [57] is appli-

cable to our interest in physical acting. However, at this point in our exploration of

the subject, our primary concern is in better understanding the effects of attempting to

capture the transformational properties of physical acting as a game interface. Addi-

tionally, with our definitions of the acting and editing levels of interaction, we view the

switches between the acting and editing levels as implicitly Brechtian [57] in how they

change the distance between player and character in a game like The Witcher 3 when

transitioning from combat to dialogue scenes.

3.1 Acting and Constraints

One of the early observations Brenda Laurel makes in Computers as Theater is that

simply placing an audience on stage is not a useful metaphor or practice for applying

Aristotelean thinking about the theater to human computer interaction. She specifically

states that by inviting the audience to interact with the the work, either theatrical or

digital, they necessarily can no longer be considered audience members or observers:

they must, by definition, be actors [28]. Following this assertion, Laurel says “Optimiz-

ing frequency, range, and significance in human choice-making will remain inadequate

16

as long as we conceive of the human as sitting on the other side of some barrier, pok-

ing at the representation with a joystick or a mouse or a virtual hand” [28]. In other

words, when we previously characterized the current standard of character interaction

in digital games (the dialogue tree) as operating at the editing level, it is because the

player can only prod the characters into acting; they are not in fact acting alongside

the characters.

Another important observation Laurel makes is that the impreciseness of the-

ater is a strength when looking to it for inspiration in interface design, particularly

when designing interactive stories. Of particular note is her assertion that “when ‘im-

precision’ works, it delivers a degree of success that is, in balance against the effort

required to achieve it, an order of magnitude more rewarding than the precision of pro-

gramming, at least for the non-programmer” [28]. Specifically with regards to games,

designers don’t always need to strive for perfect simulations or understanding of player

intent. After all, misunderstandings and unintended consequences are a common cause

of conflict and conflict is central to drama. Why shouldn’t we embrace the conflict that

emerges from the interaction of players and systems at a narrative level? By framing

systems as characters, these breakdowns can actually make characters more believable

and engaging [27].

Laurel also reminds us that how a failure is presented is largely responsible for

whether there is a breakdown in the experience [28]. A text parser not recognizing a

word and simply stating that fact will not create a conflict useful to a plot. A character

misinterpreting what the player said as flirting and then forcefully rejecting them is

17

useful to a plot. While both of these are failures of a system to recognize player intent,

in order to create a useful conflict, an action, or at least a strong suggestion of action,

should follow. Otherwise the player is asked to do the bulk of the work repairing the

breakdown on their own.

In building interactive spaces, game designers must also be creating extrinsic

and intrinsic2 constraints for interacting with the world. As Laurel observes: “the

actor is constrained in the performance of [their] character primarily by the script and

secondarily by the director, the accoutrements of the theater... and the performances of

[their] fellow actors... In spite of these narrow limits, the actor still has ample latitude

for individual creativity” [28]. Again this is why we do not usually consider a player’s

interactions with a dialogue tree as existing in the acting level. The constraints placed

on the player rarely allow for creativity in expression or choice, rather they are simply

expressing a preference of tone or character that already exists within the authored

content. A combat encounter in F.E.A.R. [47] still has a massive number of explicit and

implicit constraints placed on it, largely personified by nearly every button the player

can press creating an attempt to cause physical harm. As Laurel describes “intrinsic

constrains should not shrink people’s perceived range of freedom of action, but rather

enhance them” [28]. In this way the constraints in F.E.A.R. breed creativity in players

in a similar way the constraints of a play script and production breed creativity in an

actor.
2Extrinsic constraints refer to the context of a person as an interactor, the placement of “pause”

and “quit” buttons on a controller layout for example. Intrinsic constraints refer to the context of a
person’s ability to interact within the fictional world, whether they can pick up and throw a rock for
example [28].

18

3.2 Aristotle and the Causes

Aristotle has been the centerpiece of both Laurel and Mateas’s work in interactive

drama, with the Four Causes informing how player agency fits into traditional narrative

structure. Formal cause, the structure created by the playwright (or designers), and

material cause, what the audience experiences [34], have been given the most focus, with

efficient cause, the material components that contributed to the production (including

skills, tools and techniques), and end cause, the emotional experience of the audience

[28], being less emphasized. Laurel does however observe that “the human interactor is

also part of the efficient cause; that is, interactors are co-authors” [28] and this is one of

our primary interests in building systems to facilitate digital acting. While actors may

not have the agency of a character, they still have a large amount of agency in how a

character is expressed and experienced.

In building the definition of interactive drama, Mateas incorporated Janet Mur-

ray’s categories for the analysis of interactive story experiences: immersion (the feeling

of being present and engaged in another place), agency (the feeling of empowerment

from taking intentional action in the world), and transformation3 [34]. Of these three

categories, he considers agency to be the most fundamental to creating an interactive

drama, in part because he views immersion and transformation as already encapsulated

in the Aristotelian model. His characterization of transformation, as a change in the
3Mateas identifies three distinct meanings of transformation: transformation as masquerade, or

allowing players to become someone for the duration of the experience; transformation as variety, or
allowing players to explore facets of a theme from a variety of perspectives; and personal transformation,
or facilitating players’ self discovery.

19

protagonist, and additions to Aristotle’s formal and material causes [34] explicitly po-

sition the player as a character in the world, not simply enacting a character, and to

have a satisfying experience they must be able to affect the world as a character would.

Like Laurel’s discussion of intrinsic constraints, Mateas’s definition of agency in

interactive drama relies heavily on how setting boundaries through material (constraints

dictated by what the player can interact with) and formal (constraints dictated by plot

and setting) affordances allows for a feeling of agency and creativity. He defines an

experience creating a high amount of agency when the actions available to the player

appear in concert with with what the plot, setting, and structure dictate and a lack of

agency when there is an imbalance between the formal and material affordances [34].

In doing so he invokes Aristotle’s idea of unity of action, or when actions in a plot all

build towards some goal. It is for this reason we are specifically interested in acting

and directing methodology since they provide fairly concrete ways of constraining the

available actions for an actor in a natural way while still giving them agency over the

character, scene, and plot.

In his discussion of immersion in relation to the neo-Aristotelian model of

interactive drama, he re-frames it as usefully providing formal and material constraints

for players. In particular, when talking about immersion, he mentions the usage of

masks (as player avatars in games) as providing material and formal constraints for a

player’s actions [34], allowing them to better engage with the world. Theater has long

used masks and other devices to facilitate action on the stage, both for the audience

and actors’ benefit [51] and it’s here where we are primarily interested in leveraging

20

theatrical knowledge that remains largely untapped. Compared to masks, costumes,

and puppets, a digital game character can provide many more intrinsic constraints and

thus, by building interactive systems expressly using the same principles, we can more

readily facilitate players acting as characters the way Mateas describes.

Mateas’s reincorporation of transformation into his model of interactive drama

provides a guide for the type of dialogue interface we are interested in. He states that

there shouldn’t be easily identifiable branch points and that possibilities should neces-

sarily narrow as actions build up and force the plot in specific directions [34]. We are

still interested in using the core of his explanation of this interactive dramatic structure

as there are still currently very few experiences built with this in mind. However, rather

than dialogue being the primary mode of interaction, the player’s avatar’s movements

will inform the direction the conversation takes. In part, we want to further explore the

player’s relationship with their avatar and a new form of character interaction will be

our starting point.

3.3 Performing a Role

In response to the focus on allowing players to shape plot in interactive narratives,

Tanenbaum argues that participation in a story, rather than interaction, is a way forward

for creating interactive digital stories. He likens this participation to the constraints

placed on actor in a scripted play and a type of bounded agency [64], similar to how

Mateas views transformation as masquerade. Throughout the discussion of bounded

21

agency, Tanenbaum cautions against seeing the player as a co-author, citing Laurel’s

ideas regarding intrinsic constraints [64]. While we find this warning useful, we feel it has

the potential to be overly restrictive and minimizes the player’s role in the efficient cause.

We believe there is still space within the confines of bounded agency to allow the player

some level of control over the plot, specifically by building narratives using Aristotle’s

distinction between plot and story, and his view of the playwright4 [1]. Mateas points

to this when he says “each run-through of the story has a clean, unitary plot structure,

but multiple run-throughs have different, unitary plot structures” when discussing a

dramatic world with agency [34]. With this in mind, we can view the player as one of

the constructors of the plot, within the story space the designer has created. It is still

useful to view the player primarily as an actor in this type of experience, specifically to

define how they interface with the world.

When discussing method acting, Tanenbaum notes that “not everyone who

engages in an interactive story wants to be an author” [64]. What interests him is

the transformative potential of method acting and how that transformation can make

scripted lines feel spontaneous and concludes that “acting is a process that uses external

perceptions and actions to transform the internal state of the actor” [64]. In light of

the inherent challenges that come with acting, our goal is to provide an interface to

facilitate a similar experience to acting but is constrained enough to keep attention on

the dramatic action, not in the difficulty of acting. We believe limiting the player to

consistent physical actions and interpreting those actions to drive the dialogue (and
4Aristotle viewed it as the playwright’s job to pick and order events rather than fabricate the stories

those events are drawn from [1].

22

narrative progress) will avoid some of the problem of gating plot behind seemingly

arbitrary challenges [49]. We do not want to force everyone interacting with this type

of dialogue system to have to be an actor. Rather we are happy to give players a set of

tools to get an idea of what the character they are playing is like. We want the mask

their avatar represents to be as easy as possible to put on.

Tanenbaum and Mateas, as we discussed briefly in the previous section, find the

theatrical practices of masks as a useful lens to view player avatars and, more broadly,

to create a focal point for the intrinsic constraints placed on the player. Tanenbaum

says “we can imagine a player’s avatar as a form of Mask with a set of powerful character

associations built into it” [64] and one current example to draw from is the Street Fighter

series. Street Fighter might not be a narrative game in the traditional sense but every

character’s set of moves is both an expression of their character and a set of constraints

both extrinsic and intrinsic. From the original release of Street Fighter II [4] onwards,

Ryu and Guile have shared similar moves (they both can throw projectiles and have

powerful, high risk uppercuts) but the differences in how the player performs these

moves translate to noticeably different playstyles. Guile must hold a direction (back

for projectiles and down for uppercuts) for a second or two (depending on the game)

before pressing a button for a move to register. Ryu needs to perform a quick series of

directional inputs before pressing a button for a move to register. When playing either

character, the player will develop the sense that Guile is someone who needs to plan

and focus for more powerful attacks while Ryu is more willing to rely on his reflexes.

With this in mind, while we don’t want to replicate the special moves system found in

23

Street Fighter (and numerous other games in the genre) we do find their connections to

masks and physical acting affirming in our desire to use character movement as players’

primary interface with a plot.5

If we want to follow the promise presented by Laurel’s belief that bringing the

audience into the experience makes them actors, then we need to be building systems

around constraints of performance of character in the same way we build systems around

combat and navigation of space. Noticeably absent from much of the work done applying

theater to games is theatrical direction, where many of the decisions about the use of

space and physicality reside. This is why we view the player as only one of the authors

of the plot in our proposed approach. It is up to the game itself, through a system

heavily informed by directing and acting methods discussed in the following chapter,

to interpret the player’s actions and add to the plot based on that interpretation and

available story content.

5Elemental Flow [21] is a conversation based role-playing game currently in development also drawing
inspiration from fighting games.

24

Chapter 4

Theatrical Theory and Practices

In this chapter we look to an interpretation of the Stanislavsky method, elements of

Japanese Nō theater, and the Viewpoints practices as a basis for constructing a set of

player actions and a model of interpretation. We picked these techniques specifically

because they are practices used in training actors and directors in addition to being

incorporated into the rehearsal process. We want to be clear, we are not saying these

are the only ways to facilitate the type of physical acting we are trying to create. There

is far too much written on physical acting to be comprehensively incorporated into this

paper and the practices we discuss below were the ones we felt fit our goals the best. We

should also note that these practices focus on training humans to act in physical space

themselves. Because of this, given that we are building a digital system, our interest

rests more in how these different techniques convey emotion—though the specifics of

how they facilitate the internal transformation of actors are still useful to consider for

exploring the relationship between player and avatar.

25

In attempting to create the outline of a digital model of physical performance,

we are not attempting to capture and encode a single model and philosophy. Instead,

and in concert with the intrinsic constraints we seek to create, we believe drawing from

different traditions will allow us to construct a model reflective of our desire to mold

dialogue around player actions.

4.1 Stanislavsky and Energy

Stanislavsky’s method is one of the foundations of modern, naturalistic acting and

though his work was indeed published, the changes he made towards the end of his life

were instead primarily passed down through the Moscow Art Theater Studio Theater

School and the State Institutes of Theater Art in Moscow and St. Petersburg. What

Stanislavsky left behind would evolve into the Method of Physical Actions. This evo-

lution would emphasize each actor’s relationship to everyone else on stage as action

was performed, further strengthening Stanislavsky’s view of stage action as being born

from disagreement, conflict, or struggle between people [29]. This definition of action

allows us to further embrace Laurel’s view of the impreciseness of drama [28] and more

easily embrace a system’s failure to properly interpret the player’s actions as a source

of conflict. In this way, we want to treat the interpretation system itself as part of our

digital stage and as a partner for a player to play off of.

Another component of stage action for Stanislavsky is that the conflict gen-

erating the stage action must come from somewhere within the world of the play and

26

be directed towards a partner. Whichever character initiates a conflict is considered

the leading character of that action. For Stanislavsky, there are only two possible re-

lationships between characters engaged in a conflict. Either the leading character is

attempting to impose their view onto another character or they are making an obser-

vation about their “opponent” [29]. While much of the mechanics of what Stanislavsky

describes here in regards to conflict is more applicable to how dialogue is authored for

our proposed model, the concept of the leading character fits well with our goal of build-

ing dynamic conflicts in a plot. By having the model consider a new leading character

after every action, the player will not always be the one in control of the direction of

an action. With this, we hope to achieve the unique, unitary plot structures Mateas

describes [34] with the addition of failures of the model to always interpret player intent

correctly being a source of action.

When actually, physically performing a role, Stanislavsky refers to the con-

crete, external performance of a stage action as an actor’s adjustment. He describes

the particular arrangement of adjustments, defined in a production’s rehearsal to be

repeated each show, as part of the mise-en-scéne, the arrangement of scenery and stage

properties in a play. Crucially he notes that it is impossible to predict exactly what

an actor will do within the constraints of the mise-en-scéne and that an actor’s adjust-

ments should never become fixed and repeated [29]. This is of particular importance

to us as we want to build enough constraints into our model to allow players a range

of physical expression without relying on something as discrete as the move inputs in

Street Fighter. We are still constrained by making a digital system and, to reduce the

27

Figure 4.1: Performance of Anton Chekhov’s The Cherry Orchard by the Moscow Art
Theater in 2004 (Renata Litvinova as Ranevskaya and Andrey Smolyakov as Lopakhin
pictured) [14]. The Moscow Art Theater has been a focal point of the continued develop-
ment of Stanislavsky’s methodology and was where he developed much of his philosophy.

complexity of the interface, we necessarily limit the number of gestures available to the

player and rely on some number of authored animations rather than ask the player to

construct complete gestures entirely on their own.

Important to Stanislavsky’s view of physicality is the concept that each action

is performed with some amount of energy and that actors’ external movements should

be preceded by an internal movement. He likened this internal movement to controlling

a ball of mercury and that an actor’s body should be reacting to where the actor

wills the ball. Additionally, he makes sure to note that this direction of energy should

not only be contained within an actor’s body but flow out as an extension of their

will. With energy, like with conflict, containing it within a single actor or character

28

is not enough. To create a stage action, energy must be directed at a partner and

the direction of energy towards a less than willing partner is a dispatch of energy with

impediment.1 Of note is the two forms the impediment can take. First, an actor can

restrain energy that wants to be directed at their partner. Second, an actor can direct

energy at their partner to push them away [29]. We view this concept of energy as

fundamental to building the library of gestures for players to use, particularly because

it allows for much more readable expressions of player intent than purely relying on

a model of movement through space. Additionally, by basing the meaning of gestures

on this definition of energy, the interpretation of a gesture can be deterministic in our

simplification of physical acting, allowing players to more easily understand how the

system views their adjustments without being overly prescriptive (as gesture is not the

only element of picking a line of dialogue in our model).

This is one of our reasons for limiting the player to three distinct gestures. By

default, a character will project energy, though with little force, towards other charac-

ters and willingly receive energy. The three gestures then correspond to Stanislavsky’s

description of energy flow between characters. One will represent the unimpeded flow of

energy to bring the other character closer to the gesturing character’s view or position.

One will represent the projection of energy at a character to repel that character and

close the gesturing character off. One will represent the restraint of energy towards

another character to hide the gesturing character’s feelings towards the other character.

With regard to objects on stage, Stanislavsky puts them in two categories,
1This is in contrast to the unrestricted flow of energy characters can project.

29

objects that bear a psychological load and objects that do not. Objects that bear a

psychological load are explicitly tied to a character and help an actor explore that

character’s internal life and their relationship to other characters. Note that these

objects do not have to belong to the character to have a psychological load. Objects

that do not have some psychological importance are simply tools for actors to add to

their performance [29]. In his description of the material affordances, Mateas notes the

importance of objects for player action [34] and our interest in objects is much the same

as his. We consider objects that bear a psychological load as modifiers to gestures of a

character rather than being additive. They afford us a way of altering the energy system

underlying gestures and the gestures themselves while still maintaining our limit of three

available gestures. Similar to the concept of the leading character, Stanislavsky’s two

categories of objects create the possibility of more dynamic interactions between a player

and NPC through the use of both types of objects, and even changing which objects

carry psychological load on repeated playthroughs to allow for more transformational

variety as Mateas describes [34].

While we do see Stanislavsky’s concept of a character’s superobjective, a voli-

tional objective (an answer to the question “what do I want?”) that must encompass

all of a character’s desires [29], as useful to building constraints for players, we believe

it exists too much at the editing level for our purposes. Additionally, the Method of

Physical Actions was a step away from this purely internal focus, which characterized

much of the American interpretation of Stanislavsky’s work [29], and is more interested

in how the external informs the internal (what actually interests us). This is also one

30

of reasons for taking inspiration from Zeami’s essays on Nō theater.

4.2 Zeami and Nō Theater

Zeami Motokiyo was the progenitor of Nō theater in Japan during the 14th and 15th

century where he built his father’s theatrical practices into a total experience, incorpo-

rating mime, dance, poetry, and song—a practice that has continued to present day.

Zeami’s essays we are drawing from were never intended for wide circulation and are

primarily concerned with defining his views on how Nō should be practiced, both in the

mechanics of the art itself and the complete commitment needed by an actor from the

age of seven onwards [51]. Of course we aren’t in the position of asking for this level of

commitment from our players, but for Zeami, his art was a lifetime commitment—and

his likening of the aesthetic effect of theater to a flower, and its ever changing nature,

reflected this [51].

His metaphor is still useful for our purposes as one of his primary concerns,

like Stanislavsky, is that performance must be alive, grow, and change with both the

practitioner and the audience. One final note before we discuss some of his philosophy

and practice: unlike Aristotle, Zeami was a practitioner of theater and as a result, he

often makes note of how his teachings should be used in relation to an audience [51].

As we are making a digital game, and explicitly interested in Laurel’s view that a

player/interactor is an actor [28], this reminder of having an audience is useful since we

do not want to build an experience that requires theatrical knowledge to be engaging,

31

Figure 4.2: Nō performances feature dance, live music, and song to create a stylized
performance where the actors are the center of attention [67].

much like how Zeami thought it necessary to create an engaging experience regardless

of an audience’s understanding of Nō.

In describing role play, Zeami states that, in general, role play involves imita-

tion, though the degree to which the imitation reflects reality depends on the station

of the character being portrayed. He notes that it is not just movements that must

be imitated but dress; poorly considered costumes can undermine a performance. Ad-

ditionally, when describing the role play associated with different roles, especially of

women and old men, he emphasizes the importance of conveying grace, as well as char-

acter, through physical movements. Regarding his description of how an old man should

be played, he likens the movements to capturing the same beauty as an old tree still

blossoming [51]. For Zeami, physical action was about conveying both the physical and

32

internal truth of a role, though in a significantly more stylized way than Stanislavsky,

and it is this approach to stylization that we want to use to inform the actual gestures

players perform. Stylization can help make gestures more clearly read as a particular

affect and more easily surface some of a character’s internal feelings, making it easier for

players to understand their character in the moment [2]. Additionally, Zeami’s view of

the importance of looking the part, not just acting the part, strongly parallels Laurel’s

view of intrinsic constraints creating an explorable space of action, a guiding principle

for us when creating our characters’ physical appearances.

Similar to Stanislavsky’s view that all stage action must come from the text

of a play, Zeami sees all movement as necessarily being informed by the words chanted

on stage or, “communicate first by hearing, then by sight.” [51] In his example of an

actor portraying a character weeping on stage, Zeami notes how if the gesture of raising

a sleeve to the face precedes the concept of weeping, the words will seem out of place

and the totality of the moment is reduced. More broadly he states how a person’s

intentions give way to their behavior and that by informing movement on stage with

the words of a play, the action will feel natural [51]. This is a much finer grain view

than Stanislavsky’s volitional objectives and informs us of another utility we must write

into characters’ lines: a suggestion of action. Though we are picking the next lines of

dialogue based on what the player does, those lines should help guide a player in some

way towards further stage action to keep them continuously engaged in how a scene

plays out.

When describing the necessary novelty of performance, Zeami emphasizes the

33

need for an actor to continue to find new ways of performing the same gesture to, if

nothing else, continue to refine their art. He also notes that even if there aren’t visible

external changes to the performance, the audience will pick up on the novelty the actor

has found. It is from this novelty of performance that Zeami sees the transformative

potential of acting and in his example, how an actor can move from imitating an old man

to becoming one [51]. For our model, and since we are interested in having the player

help construct the plot, Zeami’s view of the power of transformation for an actor is very

much what Tanenbaum describes as a way forward for interactive narrative. By giving

the player control of their adjustments at all times, they will be able to find the novelty

Zeami describes even if they find themselves in a plot they’ve already experienced.

Zeami likened what the audience sees of an actor on stage to a marionette and

the actor’s presence and intensity of mind to the strings controlling the puppet [51]. By

turning the audience into an actor, in one sense we are expressly going against his belief

that the audience should never see the puppet’s strings. In another sense his metaphor

is useful to us in how it ties back to the transformational pleasure of becoming another

character. For us, it is the player’s job to breathe life into their character and become

that character through the interface we build. We may be asking the player to use

the strings Zeami describes, but if we can make the strings disappear and facilitate the

player feeling as though they are acting, we will have succeeded both in creating a new

type of dialogue system and keeping the audience unaware of the puppet’s strings.

34

4.3 The Viewpoints

The Viewpoints approach to movement and staging was born out of the 1960s and 70s

and a desire to question everything about traditional performance techniques. It was

partially a reaction to the internal focus of the American interpretation of Stanislavsky’s

work. Born from innovations in dance and choreography, the Viewpoints turned the

source of movement inward and expressly professed that whatever movements came

from this shift in perspective was the art itself or, “what made the final dance was

the context of the dance” [2]. Viewpoints, much like Zeami and Stanislavsky, sees the

process of performance as integral to the final product. This perspective is integral

to our approach to plot as being a collaboration between the player, designer, and

game system. Additionally, it provides another description of Mateas’s view of the

transformational variety of interactive drama and the value of such variety.

Anne Bogart an Tina Landau define the Viewpoints as:

• “A philosophy translated into a technique for (1) training performers; (2) building

ensemble; and (3) creating movement for the stage” [2].

• “A set of names given to certain principles of movement through time and space;

these names constitute a language for talking about what happens on stage” [2].

• “Points of awareness a performer or creator makes use of while working” [2].

They also use nine Physical Viewpoints, separated into Viewpoints of Time

and Viewpoints of Space, rather than the Six Viewpoints developed by Mary Overlie [2].

35

Figure 4.3: Viewpoints training emphasizes being in tune with one’s own body as well
as other performers. Many of the techniques used incorporate at least some degree of
activity to create group cohesion and allow for trust to be built during the rehearsal
process [43].

These Physical Viewpoints are our primary basis for interpreting a character’s movement

through space to build a narrative nav-mesh as well as informing contextual actions

related to the playable space. Bogart and Landau also developed Viewpoints for voice,

but the incorporation of voice is beyond the scope of our model for now. What follows

is a discussion of the nine Physical Viewpoints.

4.3.1 The Viewpoints of Time

These include tempo, the rate of speed at which movement occurs; duration, how long

a sequence of movement continues, specifically how long a group of people stay inside a

certain section of movement; kinesthetic response, the impulsive movement that occurs

from a stimulation of the senses; repetition, repeating a movement within your own body

or repeating the shape, tempo, gesture, etc. of something outside your own body [2].

36

For our model, these Viewpoints primarily inform the development of the inter-

face between player and character. We seek to give players as much control as possible

over their character’s movements and gestures, within the constraints of purely digital

input. We particularly want to allow players to explore tempo and duration, with the

gestures we create for characters, by allowing them to choose how quickly to perform

and how long to hold particular poses. We cannot capture the granularity of what these

Viewpoints are capable of in physical space, in part to avoid overwhelming players with

options, but we feel that by providing players a constrained version (the distinct default,

run, and slow walks described in Section 1.1) we will allow them to experience a similar

type of expressiveness in a much shorter amount of time.

4.3.2 The Viewpoints of Space

These include shape, the outline the body (or bodies) makes in space made up of lines,

curves, or some combination. Additionally the shape can either be stationary or moving

and can take one of the following forms: the body in space, the body in relation to archi-

tecture, the body in relation to other bodies; gesture, shape with a beginning, middle,

and end and broken into behavioral gestures2 and expressive gestures3; architecture, the

physical environment and its effects on physical movement to create spatial metaphors4;

spatial relationship, the distance between things on stage especially one body to another,

one body (or bodies) to a group of bodies, and the body with architecture. Additionally
2These are observable behaviors in everyday reality. [2]
3These are abstract and symbolic gestures aimed at representing an internal truth. [2]
4The process of giving form to feelings like “I’m trapped” or “I’m up against the wall.” [2]

37

there is an emphasis placed on extremes of distance and the expressiveness of changes in

distance; topography, the landscape, floor pattern, and design of a space as characterized

by movement through it [2].

These Viewpoints are the primary basis for the creation of a narrative nav-

mesh, with particular attention paid to architecture and topography. Topography espe-

cially can allow us to create spaces that change the way a player’s character is able to

move, allowing them to directly feel their character’s reactions to the environment and

choose how to play with that reaction. By building a model grounded in the shapes

created by the position of players in their environment and relative to other characters,

we can begin to interpret player movement through space in a constructive way and use

that interpretation to pick appropriate lines of dialogue.

4.3.3 Soft Focus

This is described as the physical state where the eyes relax and take in more than simply

one or two things in sharp focus. A primary goal of soft focus is to allow a person to

look at their surroundings and other people without desire. In the physical space, this

is primarily to allow actors to have a more holistic view of the space they inhabit and

connections to everything happening on stage [2]. For our purposes this concept is

useful for two reasons. First, we want players to do more than stand in front of other

characters to interact with them, encouraging them to move through the environment,

either through dialogue or the design of the space itself. Second, as players are not in

direct control of what their character says, their relationship to other characters will

38

not be purely transactional since the other characters are the core of the experience not

simply a means to an end.

Bogart and Landau explicitly position the Viewpoints as a collaborative ap-

proach to performance with the goal of, to return to Laurel’s intrinsic constraints, giving

performers the freedom to explore all possibilities within a space [2]. Noteworthy for

our purposes is that all of those possibilities represent a valid approach to the perfor-

mance [2]. Therefore all the actions our interface enables must allow player expression

to the game system to be used in the construction of the plot in some capacity. Beyond

this, there are significantly more details about the Viewpoints than we can include,

the bulk of which are about the specifics of their practice and incorporation into the

rehearsal process.

We should note that we are not the first to attempt to create a computational

system inspired by the Viewpoints. The Viewpoints AI project [23] sought to create a

gesture recognition system using physical gesture. Unlike the system we are proposing,

the Viewpoints AI utilized Microsoft’s Kinect as its source of input and used Bogart

and Landau’s ideas as a way to translate the player’s performance in physical space into

something understandable by a virtual character. As we have already stated, we are

not building a system to recognize physical gestures from players’ bodies, rather, we are

using the Viewpoints to guide our design of player actions, both by having these actions

always be interpreted meaningfully by the system and through our decisions of which

viewpoints to put directly under the player’s control and which are concerns more for

content authoring.

39

Chapter 5

System Description

5.1 System Introduction

Puppitor is specifically designed to translate keyboard actions into character gestures,

the details of which are discussed in sections 2 and 3. This is in contrast with prior

interactive drama systems, like those found in Façade [36], Versu [16], Soar AI [32], and

the Viewpoints AI system [23]. Façade’s text parsing interface is the closest existing

design to Puppitor, though it offers significantly fewer constraints on player interaction

and focuses more on the player writing character dialogue than on physicality. Versu’s

interface, for all its breadth of choice, still has players picking off of a list. The Soar

AI system is significantly more concerned with accurately modeling human psychology

and physiological drives than Puppitor. While our system is gesture based, and indeed

taking inspiration from the Viewpoints as discussed in chapter 3, this is where we see

the similarity to the Viewpoints AI ending.

40

To further contrast Puppitor with Soar AI and the Viewpoints AI, we are mak-

ing a computational caricature [59] of both stage acting and the expression of emotion.

Smith and Mateas describe computational caricatures as broadly describing systems

that embody a theory about the important elements of a domain and providing avenues

of direct inquiry into the subjective nature of a system’s implementation, particularly

the bias, exaggeration, and oversimplification that come with reifying aspects of a com-

putational system.

Puppitor is a simplified combination of the approaches to acting taken by

Stanislavsky, Zeami, and Bogart and Landau (described in chapter 3 and further dis-

cussed in sections 4 and 5). Puppitor’s model of emotional expression is derived from

a simplified interpretation of Descartes’ six universal passions, wonder, love, hatred,

desire, joy, and sadness, described by Joseph Roach [52] (further discussed in section

7). By focusing the system design on the elements most important to the problem do-

main, the computational caricature approach to system design allows us to make more

informed design choices about which elements should be authorable.

Puppitor is primarily focused on leveraging more traditional forms of user

interface to explore new modes of play rather than using gesture recognition as the

input method. This is partially due to the technical difficulty of interpreting human

movement compared to using a keyboard or gamepad. Additionally, as we previously

pointed out in chapters 2 and 3, across both game design and acting practice, constraints

foster creativity, and the limited number of inputs our system uses is a way of avoiding

overwhelming players [7] and encouraging exploration of the interface. It is here where

41

inspiration from fighting games, like the Street Fighter and Tekken series, and, more

broadly, the study of game feel [62] comes into play.

While we aren’t replicating the technical complexity of inputs found in either

2D (e.g., Street Fighter) or 3D (e.g., Tekken) [22,61] fighting games, their usage of ani-

mation to express game information [26] (further discussed in section 8) and connection

of buttons to specific character actions has been a source of technical and design inspi-

ration for Puppitor. After an experiment in physicality of its own,1 Street Fighter [3]

has used a six button layout, with the top row of buttons corresponding to punches and

the bottom row corresponding to kicks, ascending in strength from left to right. Since

its first release, Tekken [45] has given players individual buttons to control characters’

limbs, often called left punch, right punch, left kick, and right kick, to allow for a more

literal connection between player and character actions.

As we are using the Stanislavsky energy states (open flow, closed flow, pro-

jected) that we describe in chapter 3, our buttons correspond more figuratively to our

characters’ actual actions than either Street Fighter or Tekken’s input metaphors allow.

Instead our input metaphor of button press as a class of character action more closely

mirrors more stylized games like Under Night In-Birth [18], where the general actions

associated with buttons are named using the letters A, B, and C. In Under Night, the

specific action corresponding to a button is entirely determined by the character being

played. This is in contrast with Tekken and Street Fighter ’s approach to making an

explicit connection between a button and a character action (e.g. left punch in Tekken
1The original version of Street Fighter determined the strength of a punch or kick based on how hard

players hit the pressure sensitive pads on the arcade cabinet [61]

42

or medium kick in Street Fighter).

David Surman describes the execution of a special move (like throwing a fire-

ball) in Street Fighter as having a:

moment of correspondence between the special move and the player’s game-
play performance, [where] there is a heightened sense of gratification on the
part of the player as he or she ‘becomes’ their chosen martial arts superstar,
in that peculiar subject position characteristic of videogames [61].

While Puppitor’s interface does not involve any input like the special move motions in

Street Fighter, the connection between player and character Surman describes is the

same connection we hope to evoke with Puppitor.

5.2 Overview

The gesture system we outlined has four main steps in its interaction loop:

• The player pressing a button (or buttons).

• The player character performing a corresponding gesture.

• How the gesture was performed updating the values corresponding to emotional

affects.

• The largest affect values being used to generate a line of dialogue.

The rules governing the translation of a button press into a character gesture

are directly inspired by all three of the theater practices we discussed. Each gesture,

beyond the default state, is labeled as one of Stanislavsky’s energy states: open flow,

43

closed flow, and projected energy. The animations a character performs when in each

of those energy states is that character’s physical interpretation of embodying that

particular energy state. For example, a character who is usually open and honest

about their feelings would have a more open stance towards the other character when

performing the gesture corresponding to open flow and when performing the closed flow

gesture would position themselves to literally be trying to keep everything they can

close to their core, similar to how Zeami describes actors’ movements conveying grace

and character. Additionally the control the player is given over the tempo, duration,

and repetition of each of the gestures comes directly from the Viewpoints of Time and

contributes directly to the concept for the basic control scheme for the interface.

Each button corresponding to a gesture can be held for as long as the player

wants, holding that gesture for the same time. By repeatedly holding and releasing the

button, the player can repeat the full gesture as many times as they want. Similar to

the gesture buttons, the tempo buttons can be held as long as a player desires and will

increase or decrease the tempo of the performed gesture.

Translating the character’s gesture into changes in emotional affect values is

again inspired by all three of the theater practices we covered. This step in the in-

teraction loop is analogous to the practices’ insistence that physical movement reflect

something about the internal state of the character and/or performer. Since we are

giving the player direct control over the character’s physicality, the way the charac-

ter moves must have some effect on the kinds of emotional affects they are expressing.

Each gesture can increase or decrease the value of each emotional affect the character

44

can express. This update may result in possibly conflicting emotional affect values be-

ing raised by the same gesture. For example, if the closed flow gesture results in the

character fidgeting in their seat, both the emotional affects of anxiety and joy could be

raised at equivalent rates as both can be expressed by fidgeting. Slowing the fidgeting

down might make joy’s value rise faster than anxiety and speeding it up might have the

opposite effect should the player want to have the character be more definite in the way

they are expressing themselves.

Our desire to use Expressionist to generate the lines of dialogue corresponding

to the emotional affects performed by a character is primarily due to the system’s

tagging interface. The tagging system allows us to directly use the set of emotional

affects with the largest values as part of the rules to generate lines of dialogue and use

the three theater practices’ common belief that physicality needs to be grounded by a

character’s or performer’s internal state. Additionally, this means that to close the loop

of interaction, the dialogue generated is a reflection of the character’s physical actions

and will help the player decide if they want to continue performing the same gesture,

reminiscent of Zeami’s belief that words inform the way a gesture is read.

Puppitor is built around updating a character’s affect vector, a structure at-

taching floating point values to the set of emotional affects defined in a rule file and

equilibrium values for when the player is choosing to do nothing. These updates are

driven by a mapping of individual keys and buttons to the metaphorical actions of the

three Stanislavsky energy states and the two additional tempos we previously identified.

In actually implementing the proposed system outline, the primary system

45

Figure 5.1: An overview of the flow of information between user input, Puppitor’s
modules, the display, and other systems. The primary information being passed between
Puppitor’s modules is the gesture state (interpreted from the keyboard and mouse input)
and affect values stored in an affect vector.

interactions are:

• input mapping

• updating the affect vector

• animating the gesture

• choosing a prevailing affect

To help illustrate the flow of information through Puppitor’s modules we use

the following example of a player wanting to have their character express wonder.

46

5.3 Input Mapping

This module is responsible for detecting input and translating it into either an action

(one of the three Stanislavsky energy states) or a modifier (one of the three Viewpoints

tempos). To create a buffer between the raw input and the rest of the system, we have

a two step process to actually send an action and modifier in a usable form to the other

modules. The first step simply maps the keys being pressed to each action and modifier.

The second enforces the rule that only one action and one modifier may be performed

at any given time. This two step translation allows Puppitor to still read multiple key

presses at once while producing a simplified representation of the state for use elsewhere.

These separate representations of the raw input and the simplified state rep-

resentation also allow for a more structured approach to integrating the input mapping

module into other code, in our case the Ren’Py visual novel engine [53]. All raw input

can be handled in an event listener while everything that directly interacts with an

affect vector can remain in a separate update loop and react accordingly. As part of

our interest in authorability and clarity of function, our input mapping interface em-

phasizes the metaphor of actions and modifiers through the methods used to update

the representation of the key state. This not only clarifies which elements of the input

are being updated at any given moment, it also creates a consistent flow of information

across the modules: the current energy and tempo state.

This module does not directly connect keys to affects, though through the

actions and modifiers associated with each button we can understand how having a

47

character express wonder involves more than a simple button press. In our current

ruleset, every action has an effect on all six of our emotional affects, meaning that even

if the goal is to make the prevailing affect wonder, there will be other affect values

increasing if the player takes the simplest approach to maximizing wonder: performing

the projected energy gesture.

5.4 Updating the Affect Vector

The affect vector is where the translation from the gestures, mapped to the Stanislavsky

energy states and the Viewpoints’ tempos, to our set of emotional affects (discussed in

section 7) is stored. The affect vector is updated every frame by looking up the rules

associated with each individual affect based on which action and modifier are currently

being performed. The default affect update value associated with the current action is

multiplied with the value associated with the current modifier, then added to the affect

vector’s current value for the associated affect, then clamped to a specified floor and

ceiling. The exception to this application of the rules, and the reason for the inclusion of

equilibrium values, is to allow each affect value in the vector to trend towards a default

point when the player is taking no action.

Our rationale for this choice is primarily to encourage points of rest while

interacting through the interface by making the default action (of doing nothing) still

have a noticeable effect on the state, encouraging some amount of interaction while also

providing a baseline for the system. This equilibrium value also serves as a method of

48

characterization through Puppitor’s design by allowing us to reify the baseline intensity

of a character’s emotional affects.

Our current ruleset allows each gesture, including our resting gesture, to up-

date every value in the affect vector. While Puppitor does not require this approach,

we wanted to build a system to allow players to explore the combinatorial space of

expressivity created by giving them control over a character’s physicality. For example,

our current ruleset does not allow only a single affect to maximize its value when any

single button is held down. Each affect has one action/gesture that will rapidly increase

and rapidly decrease its value in the affect vector, with the other actions/gestures being

less extreme. Our reason for having a single button press effect the entire affect vector

was to avoid the dominance of single optimal strategies to maximizing particular affect

values. This is our method of encouraging player expression through character acting

in a similar way one-frame-links 2 can allow players to express their confidence in their

own abilities [9]. In Puppitor’s case, rather than dropping a combo, a player would

express a set of emotional affects that might not line up as well with their intent.

In our example, holding the projected energy gesture alone would not guar-

antee the expression of the desired affect, as both love and hatred have higher default

update values and desire is also positively influenced by the gesture. If the player chose

to perform the projected energy gesture at a faster tempo, assuming enough of a differ-

ence between the three affects’ values and the ceiling value, the value of wonder would

eventually outpace the value of the other affects before all four of them reached the
2Continuations of a combo in a fighting game that must be executed on exactly one frame of the

game’s update (a window of 1/60th of a second) [10].

49

ceiling value.

Puppitor’s general approach to its update cycle forces a degree of transition

between prevailing affects due to its realtime update cycle and rarely completely stable

affect values. Though the action and modifier interpreted from a player’s input are

applied instantly, the affect values, while also being responsive instantly, must take time

to fully transition to reflecting the new gesture, and gestures must play their transitions

from one gesture to another. This less than perfect responsiveness is reminiscent of

the actions in fighting games having a certain degree of commitment and transition

associated with them [31, 55]. It also shares the sentiment of George Henry Lewes’s

observations of Edmund Kean’s acting performances in the late 19th century.

Lewes was enamoured with Kean’s ability to express subsiding emotions, char-

acterized by lingering hints of a prior emotional state after rapidly transitioning to a

new one [30, 52]. While Puppitor is not designed to express the level of nuance a hu-

man actor is capable of, its affordances for transitioning from one gesture to another

do capture, as a computational caricature, a degree of this style of acting through its

incremental value updates. Additionally, as a function of both our approach to storing

animations and our limited number of gestures compared to the number of emotional

affects, Puppitor can create flashes of expressions during these transitional moments.

50

5.5 Animating the Gesture

Another difference between Puppitor and prior work is its usage of traditional 2D ani-

mation, compared to the 3D spaces of Façade and Haunt 2 [32] or the primarily textual

space of Versu [16]. Similar to our decision to use keyboard and mouse input rather than

a text parser or physical gesture system, our usage of hand drawn animation was both

born from the simpler technical challenges to overcome as well as the lengthy history of

2D animation and its techniques in the character-centric genre of fighting games [5,26].

As with our input mapping and affect modules, the animation state machine

we use stores lists of animation frames using our metaphor of actions and modifiers with

an additional layer of emotional affects to store character expressions along with the full

body animations. Individual frames are accessed by referencing the modifier and action

they are associated with and providing the specific list index of that frame. Puppitor’s

set of indices for whichever frame it is currently displaying are stored and accessed using

a similar modifier-action look-up as the animation frames. The primary reason for this

unusually heavyweight solution for storing list indices is to allow our system to quickly

switch between the three tempos of a given action, as all three tempos of an action are

updated simultaneously, regardless of which one is currently being performed.

Our decision to use hand drawn animation and desire for a flexible system

also necessitated Puppitor’s animation state machine to allow for changes in animation

frame-rate, semi-independent of the rest of the game’s update rate. While our current

usage of the animation state machine has used a fixed frame-rate for all animations,

51

the system features completely dynamic frame-rates to allow animators and designers

to further express characters through their usage of Puppitor.

Another feature of our animation state machine is its delineator indices, once

again stored and accessed through the modifier-action look-up paradigm. Each frame

list has a corresponding set of delineators marking the ends of each phase of the ani-

mation. Our three segmented approach of giving each animation a “startup”, “loop”,

and “recovery” phase was directly inspired by the “startup”, “active”, and “recovery”

states in fighting games 3 [31, 55]. Where Puppitor’s version differs is both in its usage

of animation loops as part of a character’s gesture and how it “cancels” the animation.

In a traditional fighting game, the part of the active or recovery state is what

can be canceled into another move to create a combo. Puppitor doesn’t have combos

and has an animation loop in the middle of its list, so instead of canceling the recovery

when the player switches the gesture they are having the character perform, if the

character is in the looping part of their animation, they skip to the recovery part of the

animation to allow for a middle ground between responsiveness and smooth animation.
3As an aside, the three states of animation both in Puppitor and numerous fighting games have a

connection to Zeami’s description of jo (“introduction” or “prelude”), ha (“development” or “exposition”,
literally “breaking”), and kyū (“climax” or “finale”, literally “rapid”) which he applies to the macro-level
ordering of plays in a days’ performance to actors’ individual movements [51]. While it is unlikely that
fighting game animations were directly inspired by Zeami’s treatises, his work provides another lens
for understanding the importance of each stage of a character’s animation beyond purely mechanical
concerns.

52

Figure 5.2: A breakdown of Ryu’s crouching medium punch into the three main phases
of a move in a fighting game: startup, active, and recovery and how these calculations
factor into having an advantage when a move successfully connects with an opponent
[24].

5.6 Choosing a Prevailing Affect

The process Puppitor uses to choose a single prevailing affect is a two part, transparent

process. First, Puppitor collects all of the affects with the largest value from a given

affect vector. There is always at least one affect in this set, but often there are more

due to the ceiling value allowing multiple affects to reach the same value at different

rates, which is why the second step exists. Puppitor will then pick the current (or only

affect) in the affect vector. If there is more than one affect collected by the first step,

and the current affect is not in that set, Puppitor will try to randomly pick an affect

that is defined as connected to the currently prevailing affect by the ruleset in use. If

no connected affects are in the gathered set, Puppitor will randomly pick from the set

of disconnected affects.

53

The reason we describe this process as transparent is that the results from the

first step of the process are accessible before the second step begins and can even be

reasoned over or have additional steps added to the pipeline before passing the set of

affects to the second step. As with the other main pieces of Puppitor’s functionality, this

decision came from our desire to keep the system flexible and allow for its processes to

have additional steps inserted should a designer want to do something more complicated

than what our default behavior allows. Additionally we built a single step wrapper

around both steps should a designer not want to worry about maintaining the multistep

process of choosing a single prevailing affect. For our eventual goal of using the affects

chosen by Puppitor as part of a media experience, the open pipeline allows us to use

the (possibly) more nuanced results from the first step for tasks like dialogue generation

while using the results of the second step for tasks that benefit from clarity, like changing

character expression and rendering text.

In our example of the expression of wonder, if the player managed to get the

values for desire, hatred and love low enough to allow the value of wonder to have

the largest value before all the affects hit the ceiling value, then wonder would remain

the prevailing affect, given Puppitor’s selection process, until its value dropped below

the next largest value. If the player keeps performing the projected energy gesture,

eventually desire, hatred, and love would reach the ceiling value. While this does not

change the prevailing affect, it does cause Puppitor to produce a set of the possible

affects containing wonder, desire, hatred, and love. This set of affects could then be

used as finer grained input for a text generation system like Expressionist [54] to create

54

a line of dialogue that expresses, for example, love and hatred, in addition to wonder,

giving the generated line more texture than simply generating dialogue to express a

single emotional affect. The actual number of additional affects a line of dialogue could

(programmatically) convey would be restricted by both the set produced by Puppitor as

well as the number of affect tags available per terminal expansion (if Puppitor is indeed

feeding tags to Expressionist).

5.7 Rules for Emotional Affects

A ruleset for Puppitor is expressed in a JSON file and then loaded into the part of the

system responsible for updating the affect vector. An entry in the ruleset is defined as

the named affect containing:

• the same set of actions and modifiers as the input mapping associated with floating

point values

• a list of connected affects

• the equilibrium value of the emotional affect

The floating point values attached to actions are the update rate of the affect

they are associated with per single call to the part of Puppitor’s affect vector update

functionality. The floating point values associated with the modifiers are the values

multiplied with the action values of the affect. The specific multiplier and value is

applied based on whichever action and modifier Puppitor interprets from a player’s

55

Figure 5.3: Excerpt of a rule file using Descartes’ six universal passions as the set of
affects. Each affect tracks how each possible energy state will update its value, how each
tempo modifier will alter that update value, what (if any) other affects are connected
to it, and the equilibrium point associated with the affect (for the target value for the
affect value to trend towards while performing the resting gesture).

input. As Puppitor’s update functionality clamps the affect vector’s values and simply

multiplies then adds the values from the ruleset file to the values in the affect vector,

the ruleset file is where all the specific behavior is defined.

The connected affects element of Puppitor’s affect definition exists specifically

to give designers a way of partially reifying (and creating some consistency in) how a

character’s emotions feed into each other as part of the process of how the system chooses

a prevailing affect. As we discussed in section 6, to choose a prevailing affect, Puppitor

prioritizes deterministic approaches to characters changing their expressed emotional

affect. Our designer-defined approach to the semi-deterministic choices Puppitor makes

56

when it has no other options allow for more consistent characterization through the

ruleset.

The equilibrium values, like the connected affects, allow for designer defined

characterization of what an individual character’s default expressed affect should be.

Our goal with the design of the ruleset files is to allow a relatively high degree of

designer control over the way characters express themselves through the rest of the

system, and by extension any media experience using Puppitor. In this light we view

Puppitor as an approach to expressing characters through systems and interface, again

taking inspiration from fighting games’ connection between their interface and their

characters [8]. Additionally, while our current usage of Puppitor only uses a single

ruleset per character, the system supports creating any number of rulesests, meaning

it is possible to have the rules for updating a character’s affect vector change based on

their currently prevailing affect, as an example. In this light, our authoring approach to

rulesets has been using them as a way to reify a character’s personality in Puppitor. As

an example, a character with a more mercurial personality might have relatively high

default affect update values to allow them to rapidly change their prevailing emotional

affect in a similar way to the actor David Garrick would show off the range of the

passions [52].

By putting our rulesets into an easily modified, authorable format like JSON,

the core system of Puppitor itself is not tied to a specific set of emotional affects, or even

specific actions and modifiers (though it does enforce the distinction between actions

and modifiers at a core level and requires consistent terminology and metaphors across

57

its modules). Instead it is a framework for creating and applying rulesets of emotional

expression using its metaphor of actions and modifiers.

The set of baseline emotional affects we picked for the current version of Pup-

pitor are the six universal passions as defined by Descartes: wonder, love, hatred, desire,

joy, and sadness [52]. Roach characterizes Descartes as a “machine-soul dualist” inter-

ested in how the passions illuminated the relationship between spirit and matter. For

Descartes, the workings of the soul were responsible for calling forth one of the passions

then animating the body into performing the passion appropriately. While Descartes’

view of emotions is inaccurate when compared with modern psychology and physiology,

his simplified metaphor for how humans express the passions, similar to Zeami’s guides

for actors [51], makes for an easier approach to implementing a system focused around

expressivity and computational caricature rather than modeling completely naturalistic

behavior.

5.8 Character Expression

To even begin approaching the task of dynamically animating characters in a 2D envi-

ronment, we found ourselves referencing numerous design patterns from fighting games

and Japanese animation. These notably include limited animation, a keyframe first

approach to a full body animation, a lower animation frame-rate than the game’s up-

date loop, and changing the timing of frames in animation lists as a way to change a

character’s tempo. Another reason we draw heavy influence from fighting games is their

58

restricted camera angles, even found in 3D games like Tekken, lending some similarities

to theatrical staging and the limited view of the audience in many traditional Western

theaters, particularly those with a proscenium arch.4

Limited animation is a method of reducing the number of frames in an anima-

tion (often employed by the Japanese animation industry), thus reducing the number

of drawings required to create a complete animation [44]. As we are hand drawing

each frame of animation for use in Puppitor, our choice to employ this is not only a

stylistic one, it is a practical one given the extremely small team size working on the

system. This approach to animation is also aided by the dynamic animation frame-rate

in the animation state machine by allowing the designer and animator more fine-grained

control over the display of the individual frames. Additionally, the limited number of

frames helps cut down on memory usage, as every frame must be loaded into memory

to be used in realtime smoothly.

Due to the way we incorporate dynamic character expressions, each affect

has its own frame list per modifier and action. While this is not the most efficient

method of storing character expressions and gestures, it allows us to use the same

approach (albeit with an additional layer of specificity) to updating the affect vector.

This method of organization also means all of a character’s drawings are stored in a single

structure, making the management of the transitions between animations relatively

simple to integrate with display code in other programs like Ren’Py.

The limited animation approach also puts more focus on our key poses in a
4A decorative arch between the stage and the auditorium, emphasizing the existence of the fourth

wall.

59

Figure 5.4: Rough key pose sketches for one of the characters in the game being built
using Puppitor. The poses marked 1 and 3 are the base poses for the looping sections of,
in this case, the resting and closed flow gestures. The middle pose is a rough in between
frame for use as part of the transition between the resting and closed flow gestures.

similar manner to fighting games [5, 26]. There is an assumption of a relatively higher

degree of responsiveness from a player character when compared to NPCs in digital

games [5]. While we are not making a combat focused game, given our interaction

paradigm, there is a similar expectation of responsiveness from the characters imple-

mented in Puppitor, and our emphasis with the animations is on three key poses per

full animation cycle: the character’s resting pose, their primary pose for looping one of

our three other gestures, and a key pose they use when transitioning to another gesture

(entailing them briefly returning to their resting pose).

We approach the process of implementing a gesture in a similar way to how the

animators of Skullgirls [50] approached animating their characters’ moves [5]. First we

sketch our key poses and add them to the animation state machine to allow us to solidify

60

the base timings for each stage of the gesture’s animation. We then add a number of

in-between frames necessary to smooth out the key pose transitions and create the

necessary level of energy before finally coloring the full animation and re-implementing

it in Ren’Py and Puppitor.

Again as an extension of our small team size and the affordances we built

into Puppitor’s animation state machine, the changes in tempo for each gesture are

primarily built around altering the timings of frames to convey changing speeds. This

again reduces the number of frames needing to be drawn for any given animation while

also allowing for relatively smooth transitions between animations in 2D, as we do not

have any other animation blending technologies currently implemented for use with

Puppitor. As Swink describes in Game Feel, players do not distinguish between the

polish5 and simulation elements of an experience [62]. Swink’s observations—along

with the various discussions of animation practices in fighting games [5, 26, 44]—are

further support for our approach to creating different tempos of animated gestures and

the design of Puppitor’s animation state machine and frame lists.

While the animated gestures are our primary source of feedback for communi-

cating what a button press does, feedback about the less immediate effects of a gesture

comes in the form of facial expressions and text rendering. The only difference in ani-

mation frames of a specific energy state and tempo across all six of our emotional affects

is the character’s expression. This expression is determined by Puppitor’s method of

choosing a prevailing affect based on a character’s affect vector (as discussed in section
5Polish is any effect such as improved quality of visual and auditory assets, that improves a player’s

perception of an experience without changing the underlying simulation [62].

61

2) and adds specificity to our more general purpose gestures without the need for en-

tirely new animations. To add even more specificity to the gesture, we alter the speed,

font size, and capitalization of a line of dialogue, using the affordances built into Ren’Py,

based on the prevailing affect when the line needs to be displayed. Not only can this

approach suggest a particular reading of a line—because of the asynchronous connection

between animations and displaying lines of dialogue, Puppitor is capable of dynamically

creating moments of subsiding emotion that a player can choose to accentuate.

62

Chapter 6

Future Work and Conclusion

6.1 Future Work

As mentioned throughout this thesis, we plan to continue building towards a digital

model of physical and spatial acting using the theory and practices we have discussed

as well as releasing a finished videogame featuring Puppitor. Once at least one of these

interactive drama games is released, we hope to tackle the problem of creating a narra-

tive nav-mesh using a similar design strategy to the rather open and flexible nature of

Puppitor: namely marking up space using a rule file to translate movement and posi-

tion into additional affect update values. These spatial rule files will likely take heavy

inspiration from the Viewpoints, particularly those relating to architecture, spatial re-

lationship, and topography. Puppitor was built to be modular, not only internally, but

also to allow other systems to be used in parallel with it; the narrative nav-mesh system

we hope to build will also help test this design.

63

There is also the question of tailoring lines of dialogue more than simply chang-

ing the line reading. In Towards an Expressive Input for Character Dialogue in Digital

Games, we proposed that the system we built to model physical acting would be attached

to James Ryan’s context-free grammar system Expressionist [54] and even included such

a link in the system diagram found in this thesis. We still plan to make this connection

(and Puppitor was built with this link in mind). Due to the nature of writing dialogue,

to make fully procedural conversations, an additional system focused around the inter-

nal structure of beats as well as tracking the outcomes of each beat would need to be

developed. With this in mind, as with the current plans for integrating Puppitor into

a released digital game, it makes sense to first develop the structure and rules for gen-

erating dialogue with Expressionist and then attempt to turn those rules and approach

into a computational system.

An additional project that we found to be beyond the scope of this thesis is

building artificial intelligence systems to interface with Puppitor (and eventually the

other systems). Our primary concern with Puppitor was to build a system for human

players to interact with but because if its flexible design and decoupling of input with

updating emotional affect values, we believe the system can also serve as a test-bed for

creating NPCs that have some understanding of physical acting (even if it is only in

the simplified space Puppitor creates). While creating AI systems that actually have a

degree of understanding of Puppitor’s rules is still an open problem that we will attempt

to address at a later date, the development of a digital game using Puppitor will provide

a step towards this goal. To give the player an acting partner, even if it is only one who

64

reacts semi-randomly, we will need to allow the computer to interface with Puppitor

in a similar way to the player. It remains to be seen how easy integrating well tested

AI approaches like MCTS or A* search is to such an interface but we hope to at least

provide a foundation for such integrations with the development of a digital game.

6.2 Conclusion

While Puppitor’s modules produce relatively intricate behavior from a small set of

actions and effects, we hope the authorability of its rulesets and interface metaphors

allows for a wider variety of experiences possible than what we as the system designers

initially built the system for. With this paper and the eventual release of a digital

game using Puppitor (and the system itself), we hope to inspire more computational

caricature-like modes of character interaction beyond combat. Puppitor may take a

wealth of inspiration from combat focused games but it uses those inspirations and

techniques to build towards a playable model of conversation. While this paper was

being written, Mark Brown of Game Maker’s Toolkit released a video asking the question

“Can we make talking as much fun as shooting?” [19], highlighting our motivation behind

the creation of Puppitor. With that said, the argument is still rooted around picking

dialogue or dialogue like actions as the primary interaction. In contrast, Puppitor takes

the fluidity of the embodied physical response of fighting games and combines it with the

emotional interaction of a conversation. We feel the timely nature of Brown’s question

only further emphasizes the relevance of our approach to both academic and industry

65

focused designers.

The core structure and organization of Puppitor are necessarily immutable

while its rulesets, animation system, and even interface metaphors are all easily editable.

The organizational structure and higher level metaphors of action (from Stanislavsky)

and modifier (from the Viewpoints) were what we found to be the minimum amount of

structure necessary to keep each module of Puppitor (input mapping, the affect vector

and its associated uses, and the animation state machine) using the same organizational

structure. In comparison, the specific mappings we use for actions (open flow, closed

flow, projected, and resting) and modifiers (tempo up, tempo down, neutral) were im-

plementation details rather than necessary structure. As a result, we decided that our

small set of actions and modifiers did not need to be the only set Puppitor was capable

of using. In this way, the system is an interface framework that allows designers to de-

cide what metaphors for interaction, within Puppitor’s structure, they find most useful

in the context of the experience they are building.

Though Puppitor is still relatively early in its development and requires further

tuning and testing to build a complete media experience, we view the system as a solid

first step on the path to creating the kind of player driven character acting and scene

construction we propose in this thesis. Even by itself, Puppitor allows the creation of

realtime, physicality focused, affective play. Additionally we feel Puppitor provides a

starting point for the further exploration of building gameplay around character phys-

icality and acting in digital games as well as providing another avenue of inquiry into

the nature of the space of interactive drama.

66

Bibliography

[1] James Bierman. Aristotle or Else.

[2] Anne Bogart and Tina Landau. The Viewpoints Book: A Practical Guide to View-

points and Composition. Theatre Communications Group, 2005.

[3] Capcom. Street Fighter, 1987.

[4] Capcom. Street Fighter II: The World Warrior, 1991.

[5] Mariel Cartwright. Making Fluid and Powerful Animations For Skullgirls. GDC.

[6] Michael Chemers. Ghost Light. Sothern Illinois UP, 2010.

[7] Kate Compton and Michael Mateas. Casual Creators. In ICCC, pages 228–235,

2015.

[8] Core-A Gaming. Analysis: How to Pick a Character.

[9] Core-A Gaming. Analysis: The Consequences of Reducing the Skill Gap.

[10] Core-A Gaming. Analysis: Why Fighting Games Are Hard.

67

[11] Steven Dow, Manish Mehta, Ellie Harmon, Blair MacIntyre, and Michael Mateas.

Presence and engagement in an interactive drama. In Proceedings of the SIGCHI

conference on Human factors in computing systems, pages 1475–1484. ACM, 2007.

[12] eAdventureUCM. La dama boba (the foolish lady). el juego (the game), 2013.

[13] Bioware Edmonton. Dragon age: Inquisition, 2014.

[14] Ekaterina Tsvetkova. Chekhov’s The Cherry Orchard, Renata Litvinova as

Ranevskaya and Andrey Smolyakov as Lopakhin.

[15] Respawn Entertainment. Titanfall 2, 2016.

[16] Richard Evans and Emily Short. Versu - a Simulationist Storytelling System. IEEE

Transactions on Computational Intelligence and AI in Games, 6(2):113–130, 2014.

[17] Gonzalo Frasca. Videogames of the oppressed: Videogames as a means for critical

thinking and debate. Master’s thesis, School of Literature, communication, and

culture, Georgia Institute of Technology, 2001.

[18] French Bread. Under Night In-Birth, 2012.

[19] Game Maker’s Toolkit. Can We Make Talking as Much Fun as Shooting? — Game

Maker’s Toolkit.

[20] Irrational Games. Bioshock Infinite, 2013.

[21] Tea-Powered Games. Elemental Flow, TBD.

68

[22] Todd L Harper. The art of war: Fighting games, performativity, and social game

play. PhD thesis, Ohio University, 2010.

[23] Mikhail Jacob, Alexander Zook, and Brian Magerko. Viewpoints AI: Procedurally

Representing and Reasoning about Gestures. 08 2013.

[24] Jett. Universal Fighting Game Guide: How to Read Frame Data.

[25] Nick Junius, Michael Mateas, and Noah Wardrip-Fruin. Towards Expressive Input

for Character Dialogue in Digital Games. In Proceedings of the 14th International

Conference on the Foundations of Digital Games, 2019.

[26] Toshiyuki Kamei. The Art Direction of Street Fighter V: The Role of Art in

Fighting Games. GDC.

[27] Rachel Lee Knickmeyer and Michael Mateas. Preliminary evaluation of the interac-

tive drama facade. In CHI’05 Extended Abstracts on Human Factors in Computing

Systems, pages 1549–1552. ACM, 2005.

[28] Brenda Laurel. Computers as Theater. Addison-Wesley Professional, 2nd. edition,

2013.

[29] Irina Levin and Igor Levin. The Stanislavsky Secret. Colorado: Meriwether Pub-

lishing, 2002.

[30] George Henry Lewes. On actors and the art of acting, volume 1533. London Smith,

Elder, 1875.

69

[31] Feiyu Lu, Kaito Yamamoto, Luis H Nomura, Syunsuke Mizuno, YoungMin Lee,

and Ruck Thawonmas. Fighting game artificial intelligence competition platform.

In 2013 IEEE 2nd Global Conference on Consumer Electronics (GCCE), pages

320–323. IEEE, 2013.

[32] Brian Magerko, John E Laird, Mazin Assanie, Alex Kerfoot, Devvan Stokes, et al.

AI characters and directors for interactive computer games. In AAAI, pages 877–

883, 2004.

[33] Borja Manero, Clara Fernández-Vara, and Baltasar Fernández-Manjón.

Stanislavky’s System as a Game Design Method: A Case Study. In DiGRA Con-

ference. Citeseer, 2013.

[34] Michael Mateas. A preliminary poetics for interactive drama and games. Digital

Creativity, 12(3):140–152, 2001.

[35] Michael Mateas and Andrew Stern. A behavior language for story-based believable

agents. IEEE Intelligent Systems, 17(4):39–47, 2002.

[36] Michael Mateas and Andrew Stern. Façade, 2005.

[37] Michael Mateas and Andrew Stern. Structuring Content in the Façade Interactive

Drama Architecture. In AIIDE, pages 93–98, 2005.

[38] Josh McCoy, Mike Treanor, Ben Samuel, Brandon Tearse, Michael Mateas, and

Noah Wardrip-Fruin. Authoring game-based interactive narrative using social

games and comme il faut. In Proceedings of the 4th International Conference &

70

Festival of the Electronic Literature Organization: Archive & Innovate. Citeseer,

2010.

[39] Josh McCoy, Mike Treanor, Ben Samuel, Noah Wardrip-Fruin, and Michael Mateas.

Prom week, 2012.

[40] Joshua McCoy and Michael Mateas. The Computation of Self in Everyday Life: A

Dramaturgical Approach for Socially Competent Agents. In AAAI Spring Sympo-

sium: Intelligent Narrative Technologies II, pages 75–82, 2009.

[41] Joshua McCoy, Michael Mateas, and Noah Wardrip-Fruin. Comme il faut: A

system for simulating social games between autonomous characters. 2009.

[42] Joshua Allen McCoy. All the World’s A Stage: A Playable Model of Social Inter-

action Inspired by Dramaturgical Analysis. PhD thesis, University of California,

Santa Cruz, Santa Cruz, CA, June 2012.

[43] Michael Brosilow. SITI Workshops Header.

[44] Junya C Motomura. GuiltyGearXrd’s Art Style : The X Factor Between 2D and

3D. GDC.

[45] Namco. Tekken, 1994.

[46] Interplay Productions. Fallout: A Post Nuclear Role Playing Game, 1997.

[47] Monolith Productions. F.E.A.R. First Encounter Assault Recon, 2005.

[48] CD Projekt Red. The Witcher 3: Wild Hunt, 2015.

71

[49] Aaron A. Reed. Changeful Tales: Design-Driven Approaches Toward More Expres-

sive Storygames. PhD thesis, University of California, Santa Cruz, Santa Cruz,

CA, June 2017.

[50] Reverge Labs. Skullgirls, 2012.

[51] J Thomas Rimer, Masakazu Yamazaki, et al. On the Art of the Nō Drama: The

Major Treatises of Zeami; Translated by J. Thomas Rimer, Yamazaki Masakazu.

Princeton University Press, 1984.

[52] Joseph R Roach. The player’s passion: studies in the science of acting. University

of Michigan Press, 1993.

[53] Tom Rothamel. Ren’Py, 2004.

[54] James Ryan, Ethan Seither, Michael Mateas, and Noah Wardrip-Fruin. Expres-

sionist: An authoring tool for in-game text generation. In International Conference

on Interactive Digital Storytelling, pages 221–233. Springer, 2016.

[55] Ryukenden and C-Royd. Ryu (3S).

[56] Serdar Sali, Noah Wardrip-Fruin, Steven Dow, Michael Mateas, Sri Kurniawan,

Aaron A Reed, and Ronald Liu. Playing with words: from intuition to evaluation

of game dialogue interfaces. In Proceedings of the Fifth International Conference

on the Foundations of Digital Games, pages 179–186. ACM, 2010.

[57] Ben Samuel. Crafting Stories Through Play. PhD thesis, University of California,

Santa Cruz, Santa Cruz, CA, December 2016.

72

[58] Daniel G Shapiro, Joshua McCoy, April Grow, Ben Samuel, Andrew Stern, Reid

Swanson, Mike Treanor, and Michael Mateas. Creating Playable Social Experiences

through Whole-Body Interaction with Virtual Characters. In AIIDE, 2013.

[59] Adam M Smith and Michael Mateas. Computational caricatures: Probing the

game design process with ai. In Workshops at the Seventh Artificial Intelligence

and Interactive Digital Entertainment Conference, 2011.

[60] Night School Studio. Oxenfree, 2016.

[61] David Surman. Pleasure, spectacle and reward in capcom’s street fighter series

david surman. Videogame, Player, Text, page 204, 2007.

[62] Steve Swink. Game feel: a game designer’s guide to virtual sensation. CRC Press,

2008.

[63] Binary Systems. Starflight, 1986.

[64] Joshua Tanenbaum. Being in the story: readerly pleasure, acting theory, and

performing a role. In International Conference on Interactive Digital Storytelling,

pages 55–66. Springer, 2011.

[65] Tommy Thompson. The AI of BioShock Infinite’s Elizabeth — AI and Games,

2017.

[66] Noah Wardrip-Fruin. Expressive Processing: Digital fictions, computer games, and

software studies. MIT press, 2009.

73

[67] YUKO M. Noh theater stage.

74

Appendix A

Input Mapping Module

#
Animation_Structure contains nested dictionaries for storing frames of

↪→ animation and where in the animation loop the simulation is
the default arguments of Animation_Structure use theatrical terms for

↪→ organization
#
because of the way modifier_list and action_list are used in the

↪→ construction of the nested dictionaries
the order of the lists passed only determines the order of index

↪→ arguments needed to access the values stored
in either self.animation_frame_lists or self.current_frames
#
NOTE: THE CURRENT DEFAULT OF final_frame_index IS A PLACEHOLDER MAKE

↪→ SURE TO CHANGE IN PRODUCTION
final_frame_index is strictly a bookkeeping variable and necessary for

↪→ update_displayed_frame () to work properly
#
frame_rate_delay is the number of frames to hold on before a new frame

↪→ of animation is selected
the default values assume a 60Hz rate of calling update_displayed_frame

↪→ () and a desired animation rate of 10FPS
#
class Animation_Structure:

def __init__(self , frame_rate_delay = 5, modifier_list = [’tempo_up ’,
↪→ ’tempo_down ’, ’neutral ’], action_list = [’open_flow ’, ’
↪→ closed_flow ’, ’projected_energy ’, ’resting ’], affect_list = [’
↪→ joy’, ’hatred ’, ’sadness ’, ’wonder ’, ’love’, ’desire ’]):

self.animation_frame_lists is a dictionary that uses modifiers
↪→ to access actions to access individual frame lists

75

self.animation_frame_lists = {}
for modifier in modifier_list:

self.animation_frame_lists[modifier] = {}
for modifier in self.animation_frame_lists:

for action in action_list:
self.animation_frame_lists[modifier][action] = {}

for modifier in self.animation_frame_lists:
for action in action_list:

for affect in affect_list:
self.animation_frame_lists[modifier][action][affect]

↪→ = []

used to track the frame index of all animation lists
self.current_frames = {}
for modifier in modifier_list:

self.current_frames[modifier] = {}
for modifier in self.current_frames:

for action in action_list:
self.current_frames[modifier][action] = 0

used to store the end points of each part of individual
↪→ animation frame lists

to update the values to allow the update_displayed_frame ()
↪→ function to properly work:

#
<Animation_Structure instance >. frame_index_delineators[’<

↪→ modifier >’][’<action >’][’startup ’] = 6
<Animation_Structure instance >. frame_index_delineators[’<

↪→ modifier >’][’<action >’][’loop ’] = 8
<Animation_Structure instance >. frame_index_delineators[’<

↪→ modifier >’][’<action >’][’final frame ’] = len(<
↪→ Animation_Structure instance >. animation_frame_lists[’<
↪→ modifier >’][’<action >’][’<affect >’]) - 1

#
the final frame line in the example assumes the desire is to

↪→ have the final frame delineator as the last frame in the
↪→ corresponding <Animation_Structure instance >
↪→ animation_frame_list

Animation_Structure assumes that ’startup ’ value < ’loop’ value
↪→ < ’final frame’ value

#
self.frame_index_delineators = {}
for modifier in modifier_list:

self.frame_index_delineators[modifier] = {}
for modifier in self.frame_index_delineators:

for action in action_list:
self.frame_index_delineators[modifier][action] = {’

↪→ startup ’: 0, ’loop’: 1, ’final␣frame’: 2} #
↪→ default values to be swapped out after the
↪→ Animation_Structure is built (use
↪→ load_animation_list ())

self.current_displayed_frame = None

76

self.current_animation_action = action_list [-1]
used for switching over to a new animation corresponding to the

↪→ current action the player is taking once the previous
↪→ animation has finished

self.reached_end_of_frame_list = False
used for setting the frame rate of animations stored in this

↪→ structure
default values assume an update rate of 60Hz creating an

↪→ animation frame rate of 10FPS
self.frame_rate_delay = frame_rate_delay
internal counter for advancing the frame rate delay
self.frame_rate_delay_count = 0

used for putting full animations into the animation structure
frame_list is the set of animation frames to be added to the

↪→ initialized animation_frame_lists
modifier , action , affect all correspond to where in the

↪→ animation_frame_lists the animation frames will be stored (and
↪→ by default should be strings)

startup_end_frame_index , loop_end_frame_index , final_frame_index
↪→ are integer values used to mark off the different sections of
↪→ the animation

def load_animation_list(self , frame_list , modifier , action , affect ,
↪→ startup_end_frame_index , loop_end_frame_index ,
↪→ final_frame_index):
for animation_frame in frame_list:

self.animation_frame_lists[modifier][action][affect]. append(
↪→ animation_frame)

self.frame_index_delineators[modifier][action][’startup ’] =
↪→ startup_end_frame_index

self.frame_index_delineators[modifier][action][’loop’] =
↪→ loop_end_frame_index

self.frame_index_delineators[modifier][action][’final␣frame’] =
↪→ final_frame_index

return

should be used to access the currently displayed frame
should be returning a Sprite if used with RenPy
def get_displayed_frame(self):

return self.current_displayed_frame

returns the next frame in an animation sequence as well as the
↪→ previous frame

this is primarily a book keeping function meant to allow a
↪→ persistent

should be returning a Sprite if used with RenPy
def update_displayed_frame(self , modifier , action , affect):

if self.frame_rate_delay_count < self.frame_rate_delay:
self.frame_rate_delay_count += 1

else:
#self.displayed_frame_data = (modifier , self.

↪→ current_animation_action , affect , self.current_frames[

77

↪→ modifier][self.current_animation_action])
for mod in self.animation_frame_lists:

skip to returning to resting if the player has changed
↪→ the energy state

if self.current_animation_action != action:
if self.current_frames[mod][self.

↪→ current_animation_action] < self.
↪→ frame_index_delineators[mod][self.
↪→ current_animation_action][’loop’]:
self.current_frames[mod][self.

↪→ current_animation_action] = self.
↪→ frame_index_delineators[mod][self.
↪→ current_animation_action][’loop’] + 1

else:
self.current_frames[mod][self.

↪→ current_animation_action] += 1
if self.current_frames[mod][self.

↪→ current_animation_action] > self.
↪→ frame_index_delineators[mod][self.
↪→ current_animation_action][’final␣frame’]:
self.current_frames[mod][self.

↪→ current_animation_action] = 0
self.reached_end_of_frame_list = True

startup animation
elif self.current_frames[mod][self.

↪→ current_animation_action] < self.
↪→ frame_index_delineators[mod][self.
↪→ current_animation_action][’startup ’]:
self.current_frames[mod][self.

↪→ current_animation_action] += 1
loop animation
elif self.current_frames[mod][self.

↪→ current_animation_action] <= self.
↪→ frame_index_delineators[mod][self.
↪→ current_animation_action][’loop’]:
if self.current_animation_action != action:

self.current_frames[mod][self.
↪→ current_animation_action] = self.
↪→ frame_index_delineators[mod][self.
↪→ current_animation_action][’loop’] + 1

else:
self.current_frames[mod][self.

↪→ current_animation_action] += 1
if self.current_frames[mod][self.

↪→ current_animation_action] > self.
↪→ frame_index_delineators[mod][self.
↪→ current_animation_action][’loop’]:
self.current_frames[mod][self.

↪→ current_animation_action] = self.
↪→ frame_index_delineators[mod][self.
↪→ current_animation_action][’startup ’] +
↪→ 1 # return to first frame of the
↪→ loop

78

return to default animation
elif self.current_frames[mod][self.

↪→ current_animation_action] <= self.
↪→ frame_index_delineators[mod][self.
↪→ current_animation_action][’final␣frame’]:
self.current_frames[mod][self.

↪→ current_animation_action] += 1
if self.current_frames[mod][self.

↪→ current_animation_action] > self.
↪→ frame_index_delineators[mod][self.
↪→ current_animation_action][’final␣frame’]:
self.current_frames[mod][self.

↪→ current_animation_action] = 0
self.reached_end_of_frame_list = True

if self.reached_end_of_frame_list:
self.current_animation_action = action
self.reached_end_of_frame_list = False

else:
self.current_animation_action = self.

↪→ current_animation_action
self.frame_rate_delay_count = 0

self.current_displayed_frame = self.animation_frame_lists[
↪→ modifier][self.current_animation_action][affect][self.
↪→ current_frames[modifier][self.current_animation_action]]

return(self.animation_frame_lists[modifier][self.
↪→ current_animation_action][affect][self.current_frames[
↪→ modifier][self.current_animation_action]])

79

Appendix B

Affect Update Module

#
Affecter is a wrapper around a JSON object based dictionary of affects

↪→ (see contents of the affect_rules directory for formatting details
↪→)

#
By default Affecter clamps the values of an Affect_Vector in the range

↪→ of 0.0 to 1.0 and uses theatrical terminology , consistent with
the default keys in gesture_keys.py inside of the actual_action_states

↪→ dictionary in the Gesture_Interface class
#
NOTE: WHICHEVER ACTION IS SPECIFIED AS equilibrium_action MUST HAVE A

↪→ POSITIVE FLOAT VALUE ASSOCIATED WITH IT
OTHERWISE THE LOGIC MOVING THE AFFECT VALUES TOWARDS THE

↪→ equilibrium_value WILL NOT FUNCTION PROPERLY
#
import json
import random
import math

class Gesture_Affecter:
affect_rules_name must take the form of ’_filename_.json’
affect_rules_directory must take the form of ’_directoryname_/

↪→ _directoryname_ /.../ _directoryname_/’
def __init__(self , affect_rules_name , affect_rules_directory ,

↪→ affect_floor = 0.0, affect_ceiling = 1.0, equilibrium_action =
↪→ ’resting ’):
with open(affect_rules_directory + affect_rules_name) as entry:

affect_rules are organized as [’affect ’][’type ’][’action ’]
NOTE ’type’ is either ’actions ’ or ’modifiers ’
or [’affect ’][’ adjacent_affects ’] to get the adjacency list

80

self.affect_rules = json.load(entry)
self.floor_value = affect_floor
self.ceil_value = affect_ceiling
self.equilibrium_action = equilibrium_action
self.current_affect = self.affect_rules.keys()[0] # TODO do

↪→ something more consistent and robust

for use clamping the updated affect values between a given
↪→ floor_value and ceil_value

def _update_and_clamp_values(self , affect_value , affect_update_value ,
↪→ floor_value , ceil_value):
return max(min(affect_value + affect_update_value , ceil_value),

↪→ floor_value)

affect_vector is an Affect_Vector specified by class Affect_Vector
↪→ in this file

the floats correspond to the strength of the expressed affect
current_action corresponds to the standard action expressed by a

↪→ Gesture_Interface instance in its actual_action_states
NOTE: clamps affect values between floor_value and ceil_value
NOTE: while performing the equilibrium_action the affect values

↪→ will move toward the equilibrium_value of the given
↪→ affect_vector

def update_affect(self , affect_vector , current_action ,
↪→ current_modifier):
for affect in affect_vector.affects:

current_action_update_value = self.affect_rules[affect][’
↪→ actions ’][current_action]

current_modifier_update_value = self.affect_rules[affect][’
↪→ modifiers ’][current_modifier]

current_equilibrium_value = self.affect_rules[affect][’
↪→ equilibrium_point ’]

move towards resting value specified in affect_vector when
↪→ updating the action associated with the the ’
↪→ equilibrium_action ’

if current_action == self.equilibrium_action:
if affect_vector.affects[affect] >

↪→ current_equilibrium_value:
affect_vector.affects[affect] = self.

↪→ _update_and_clamp_values(affect_vector.affects
↪→ [affect], -1 * abs(
↪→ current_modifier_update_value *
↪→ current_action_update_value),
↪→ current_equilibrium_value , self.ceil_value)

elif affect_vector.affects[affect] <
↪→ current_equilibrium_value:
affect_vector.affects[affect] = self.

↪→ _update_and_clamp_values(affect_vector.affects
↪→ [affect], abs(current_modifier_update_value *
↪→ current_action_update_value), self.floor_value
↪→ , current_equilibrium_value)

else:

81

continue
else:

affect_vector.affects[affect] = self.
↪→ _update_and_clamp_values(affect_vector.affects[
↪→ affect], current_modifier_update_value *
↪→ current_action_update_value , self.floor_value ,
↪→ self.ceil_value)

return

affect_vector must be an Affect_Vector
returns a list of the affects with the highest strength of

↪→ expression in the given affect_vector
allowable_error is used for dealing with the approximate value of

↪→ floats
def get_possible_affects(self , affect_vector , allowable_error =

↪→ 0.00000001):
prevailing_affects = []

for current_affect in affect_vector.affects:
if not prevailing_affects:

prevailing_affects.append(current_affect)
elif affect_vector.affects[prevailing_affects [0]] <

↪→ affect_vector.affects[current_affect]:
prevailing_affects = []
prevailing_affects.append(current_affect)

check if the affect magnitudes are approximately equal
elif abs(affect_vector.affects[prevailing_affects [0]] -

↪→ affect_vector.affects[current_affect]) <
↪→ allowable_error:
prevailing_affects.append(current_affect)

#print(current_affect , affect_vector.affects[current_affect])
#print(prevailing_affects)
return prevailing_affects

chooses the next current affect
possible_affects must be a list of strings of affects defined in

↪→ the .json file loaded into the Affecter instance
possible_affects can be generated using the get_possible_affects ()

↪→ function
the choice logic is as follows:
pick the only available affect
if there is more than one and the current_affect is in the set of

↪→ possible_affects pick it
if the current_affect is not in the set but there is at least one

↪→ affect connected to the current affect , pick from that subset
otherwise randomly pick from the disconnected set of possible

↪→ affects
def choose_prevailing_affect(self , possible_affects):

connected_affects = []

if len(possible_affects) == 1:
self.current_affect = possible_affects [0]

82

return self.current_affect

if self.current_affect in possible_affects:
return self.current_affect

for affect in possible_affects:
if affect in self.affect_rules[self.current_affect][’

↪→ adjacent_affects ’]:
connected_affects.append(affect)

if connected_affects:
self.current_affect = random.choice(connected_affects)
return self.current_affect

else:
self.current_affect = random.choice(possible_affects)
return self.current_affect

wrapper function around the get_possible_affects () to
↪→ choose_prevailing_affect () pipeline to allow for easier , more
↪→ fixed integration into other code

NOTE: this function is not intended to supercede the useage of both
↪→ get_possible_affects () and choose_prevailing_affect ()

it is here for convenience and if the default behavior of
↪→ immediately using the list created by get_possible_affects ()
↪→ in choose_prevailing_affect ()

is the desired functionality
def get_prevailing_affect(self , affect_vector , allowable_error =

↪→ 0.00000001):
possible_affects = self.get_possible_affects(affect_vector ,

↪→ allowable_error)
prevailing_affect = self.choose_prevailing_affect(

↪→ possible_affects)
return prevailing_affect

a wrapper around a python dictionary to organize affects and setup
↪→ rules for handling the ’resting ’ action

class Affect_Vector:
affect_names takes a list of strings
def __init__(self , affect_names , equilibrium_values):

self.affects = {}
for affect in affect_names:

dictionary with strings specifying affects (as defined in
↪→ Affecter) as keys and floats as values

self.affects[affect] = equilibrium_values[affect][’
↪→ equilibrium_point ’]

83

Appendix C

Animation State Machine Module

#
Animation_Structure contains nested dictionaries for storing frames of

↪→ animation and where in the animation loop the simulation is
the default arguments of Animation_Structure use theatrical terms for

↪→ organization
#
because of the way modifier_list and action_list are used in the

↪→ construction of the nested dictionaries
the order of the lists passed only determines the order of index

↪→ arguments needed to access the values stored
in either self.animation_frame_lists or self.current_frames
#
NOTE: THE CURRENT DEFAULT OF final_frame_index IS A PLACEHOLDER MAKE

↪→ SURE TO CHANGE IN PRODUCTION
final_frame_index is strictly a bookkeeping variable and necessary for

↪→ update_displayed_frame () to work properly
#
frame_rate_delay is the number of frames to hold on before a new frame

↪→ of animation is selected
the default values assume a 60Hz rate of calling update_displayed_frame

↪→ () and a desired animation rate of 10FPS
#
class Animation_Structure:

def __init__(self , frame_rate_delay = 5, modifier_list = [’tempo_up ’,
↪→ ’tempo_down ’, ’neutral ’], action_list = [’open_flow ’, ’
↪→ closed_flow ’, ’projected_energy ’, ’resting ’], affect_list = [’
↪→ joy’, ’hatred ’, ’sadness ’, ’wonder ’, ’love’, ’desire ’]):

self.animation_frame_lists is a dictionary that uses modifiers
↪→ to access actions to access individual frame lists

84

self.animation_frame_lists = {}
for modifier in modifier_list:

self.animation_frame_lists[modifier] = {}
for modifier in self.animation_frame_lists:

for action in action_list:
self.animation_frame_lists[modifier][action] = {}

for modifier in self.animation_frame_lists:
for action in action_list:

for affect in affect_list:
self.animation_frame_lists[modifier][action][affect]

↪→ = []

used to track the frame index of all animation lists
self.current_frames = {}
for modifier in modifier_list:

self.current_frames[modifier] = {}
for modifier in self.current_frames:

for action in action_list:
self.current_frames[modifier][action] = 0

used to store the end points of each part of individual
↪→ animation frame lists

to update the values to allow the update_displayed_frame ()
↪→ function to properly work:

#
<Animation_Structure instance >. frame_index_delineators[’<

↪→ modifier >’][’<action >’][’startup ’] = 6
<Animation_Structure instance >. frame_index_delineators[’<

↪→ modifier >’][’<action >’][’loop ’] = 8
<Animation_Structure instance >. frame_index_delineators[’<

↪→ modifier >’][’<action >’][’final frame ’] = len(<
↪→ Animation_Structure instance >. animation_frame_lists[’<
↪→ modifier >’][’<action >’][’<affect >’]) - 1

#
the final frame line in the example assumes the desire is to

↪→ have the final frame delineator as the last frame in the
↪→ corresponding <Animation_Structure instance >
↪→ animation_frame_list

Animation_Structure assumes that ’startup ’ value < ’loop’ value
↪→ < ’final frame’ value

#
self.frame_index_delineators = {}
for modifier in modifier_list:

self.frame_index_delineators[modifier] = {}
for modifier in self.frame_index_delineators:

for action in action_list:
self.frame_index_delineators[modifier][action] = {’

↪→ startup ’: 0, ’loop’: 1, ’final␣frame’: 2} #
↪→ default values to be swapped out after the
↪→ Animation_Structure is built (use
↪→ load_animation_list ())

self.current_displayed_frame = None

85

self.current_animation_action = action_list [-1]
used for switching over to a new animation corresponding to the

↪→ current action the player is taking once the previous
↪→ animation has finished

self.reached_end_of_frame_list = False
used for setting the frame rate of animations stored in this

↪→ structure
default values assume an update rate of 60Hz creating an

↪→ animation frame rate of 10FPS
self.frame_rate_delay = frame_rate_delay
internal counter for advancing the frame rate delay
self.frame_rate_delay_count = 0

used for putting full animations into the animation structure
frame_list is the set of animation frames to be added to the

↪→ initialized animation_frame_lists
modifier , action , affect all correspond to where in the

↪→ animation_frame_lists the animation frames will be stored (and
↪→ by default should be strings)

startup_end_frame_index , loop_end_frame_index , final_frame_index
↪→ are integer values used to mark off the different sections of
↪→ the animation

def load_animation_list(self , frame_list , modifier , action , affect ,
↪→ startup_end_frame_index , loop_end_frame_index ,
↪→ final_frame_index):
for animation_frame in frame_list:

self.animation_frame_lists[modifier][action][affect]. append(
↪→ animation_frame)

self.frame_index_delineators[modifier][action][’startup ’] =
↪→ startup_end_frame_index

self.frame_index_delineators[modifier][action][’loop’] =
↪→ loop_end_frame_index

self.frame_index_delineators[modifier][action][’final␣frame’] =
↪→ final_frame_index

return

should be used to access the currently displayed frame
should be returning a Sprite if used with RenPy
def get_displayed_frame(self):

return self.current_displayed_frame

returns the next frame in an animation sequence as well as the
↪→ previous frame

this is primarily a book keeping function meant to allow a
↪→ persistent

should be returning a Sprite if used with RenPy
def update_displayed_frame(self , modifier , action , affect):

if self.frame_rate_delay_count < self.frame_rate_delay:
self.frame_rate_delay_count += 1

else:
#self.displayed_frame_data = (modifier , self.

↪→ current_animation_action , affect , self.current_frames[

86

↪→ modifier][self.current_animation_action])
for mod in self.animation_frame_lists:

skip to returning to resting if the player has changed
↪→ the energy state

if self.current_animation_action != action:
if self.current_frames[mod][self.

↪→ current_animation_action] < self.
↪→ frame_index_delineators[mod][self.
↪→ current_animation_action][’loop’]:
self.current_frames[mod][self.

↪→ current_animation_action] = self.
↪→ frame_index_delineators[mod][self.
↪→ current_animation_action][’loop’] + 1

else:
self.current_frames[mod][self.

↪→ current_animation_action] += 1
if self.current_frames[mod][self.

↪→ current_animation_action] > self.
↪→ frame_index_delineators[mod][self.
↪→ current_animation_action][’final␣frame’]:
self.current_frames[mod][self.

↪→ current_animation_action] = 0
self.reached_end_of_frame_list = True

startup animation
elif self.current_frames[mod][self.

↪→ current_animation_action] < self.
↪→ frame_index_delineators[mod][self.
↪→ current_animation_action][’startup ’]:
self.current_frames[mod][self.

↪→ current_animation_action] += 1
loop animation
elif self.current_frames[mod][self.

↪→ current_animation_action] <= self.
↪→ frame_index_delineators[mod][self.
↪→ current_animation_action][’loop’]:
if self.current_animation_action != action:

self.current_frames[mod][self.
↪→ current_animation_action] = self.
↪→ frame_index_delineators[mod][self.
↪→ current_animation_action][’loop’] + 1

else:
self.current_frames[mod][self.

↪→ current_animation_action] += 1
if self.current_frames[mod][self.

↪→ current_animation_action] > self.
↪→ frame_index_delineators[mod][self.
↪→ current_animation_action][’loop’]:
self.current_frames[mod][self.

↪→ current_animation_action] = self.
↪→ frame_index_delineators[mod][self.
↪→ current_animation_action][’startup ’] +
↪→ 1 # return to first frame of the
↪→ loop

87

return to default animation
elif self.current_frames[mod][self.

↪→ current_animation_action] <= self.
↪→ frame_index_delineators[mod][self.
↪→ current_animation_action][’final␣frame’]:
self.current_frames[mod][self.

↪→ current_animation_action] += 1
if self.current_frames[mod][self.

↪→ current_animation_action] > self.
↪→ frame_index_delineators[mod][self.
↪→ current_animation_action][’final␣frame’]:
self.current_frames[mod][self.

↪→ current_animation_action] = 0
self.reached_end_of_frame_list = True

if self.reached_end_of_frame_list:
self.current_animation_action = action
self.reached_end_of_frame_list = False

else:
self.current_animation_action = self.

↪→ current_animation_action
self.frame_rate_delay_count = 0

self.current_displayed_frame = self.animation_frame_lists[
↪→ modifier][self.current_animation_action][affect][self.
↪→ current_frames[modifier][self.current_animation_action]]

return(self.animation_frame_lists[modifier][self.
↪→ current_animation_action][affect][self.current_frames[
↪→ modifier][self.current_animation_action]])

88

Appendix D

Example Rule File

{
"joy" : {

"actions" : {
"open_flow" : 0.0007 ,
"closed_flow" : -0.0005,
"projected_energy" : -0.0002,
"resting" : -0.0001

},
"modifiers" : {

"tempo_up" : 1.25,
"tempo_down" : 0.9,
"neutral" : 1.0

},
"adjacent_affects" : [" desire"],
"equilibrium_point" : 0.5

},
"hatred" : {

"actions" : {
"open_flow" : -0.0004,
"closed_flow" : 0.00035 ,
"projected_energy" : 0.0007 ,
"resting" : 0.0001

},
"modifiers" : {

"tempo_up" : 0.9,
"tempo_down" : 1.3,
"neutral" : 1.0

},
"adjacent_affects" : ["joy"],
"equilibrium_point" : 0.5

89

},
"sadness" : {

"actions" : {
"open_flow" : -0.0004,
"closed_flow" : 0.0009 ,
"projected_energy" : -0.0002,
"resting" : 0.0001

},
"modifiers" : {

"tempo_up" : 0.95,
"tempo_down" : 1.2,
"neutral" : 1.0

},
"adjacent_affects" : [" hatred"],
"equilibrium_point" : 0.5

},
"desire" : {

"actions" : {
"open_flow" : 0.0008 ,
"closed_flow" : -0.0007,
"projected_energy" : 0.0001 ,
"resting" : 0.0001

},
"modifiers" : {

"tempo_up" : 1.12,
"tempo_down" : 0.7,
"neutral" : 1.0

},
"adjacent_affects" : [" wonder"],
"equilibrium_point" : 0.5

},
"wonder" : {

"actions" : {
"open_flow" : 0.0002 ,
"closed_flow" : -0.0008,
"projected_energy" : 0.0006 ,
"resting" : 0.0001

},
"modifiers" : {

"tempo_up" : 1.1,
"tempo_down" : 1.05,
"neutral" : 1.0

},
"adjacent_affects" : ["joy"],
"equilibrium_point" : 0.5

},
"love" : {

"actions" : {
"open_flow" : 0.0001 ,
"closed_flow" : -0.0009,
"projected_energy" : 0.0007 ,
"resting" : 0.0001

},

90

"modifiers" : {
"tempo_up" : 0.6,
"tempo_down" : 1.25,
"neutral" : 1.0

},
"adjacent_affects" : [" desire"],
"equilibrium_point" : 0.5

}
}

91

